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Abstract: This paper considers the framework of 
component-based software and illustrates the usage of 
intuitionistic fuzzy numbers in imprecise software 
reliability modeling and computing. It is shown how 
intuitionistic triangular and trapezoidal fuzzy 
numbers can be used in computing the intuitionistic 
fuzzy reliability of serial, parallel and hybrid software 
architectures. 
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1 INTRODUCTION 
 

Component-based software design, implementation, 
testing, and reusing are the most important steps of a 
recent methodology facilitating agility in software project 
management [1, 2]. It can be described by the usage of 
reusable components as the building blocks for 
constructing software [4]. According to [8], "software 
assets, or components, include all software products, 
from requirements and proposals, to specifications and 
design, to user manuals and test suites". Also, the 
software analysis depends on three assets [11]: code, 
specification, and test received.  

In order to establish the terminology used in this 
paper, by software component we refer to any of the 
following assets: functions (belonging to a reusable 
library), modules (or classes), libraries (collections of 
reusable functions), packages (collections of reusable 
classes), and applications (programs to be reused by 
“exec” service, including code, files, and databases). We 
do not refer to any specification or tests, even these are 
very important when analyze the software quality. 

From viewpoint of software methodologies 
paradigms, an important step toward efficient reuse of 
software components consists of the evolution from 
reusable function libraries to object-oriented class 
libraries reaching a new stage called: reusable 
application framework and platform [6].  

The aims of component-based methodology are to 
achieve multiple quality objectives related to structured-
ness efficiency, usability, consistency, conciseness, 
completeness, portability, security, maintainability, 
testability, and reliability. Other quality aspects refer to 
the verification costs’ minimization, the software 
reliability increase, and to the development time 
reduction. Recently, new quality influential factors were 
added: trust-ability, interoperability, transparency and 

extensibility [2, 13]. For the aim of this paper only the 
reliability characteristic will be considered. 

According to [15], a software component is defined 
as "a unit of composition with contractually specified 
interfaces and explicit context dependencies only. A 
software component can be deployed independently and is 
subject to composition by third parties". The individual 
components can be tested and evaluated independently [6, 
7, 9]. The whole system reliability depends on the 
reliability of every component and the architectural 
model. Following the standard model, if the system 
consists of n components with reliabilities Rj, j = 1, 2, …, 
n, and an execution path is given, for instance: 1, 4, 3, 4, 
2, 1, 4, 3, n, then the path reliability is 
R1xR4xR3xR4xR2xR1xR4xR3xRn. The system reliability can 
be estimated by averaging over all path reliabilities [9]. A 
probabilistic approach based on the probabilities of using 
the components will be described in the next section. The 
approach is a special case of component based statistical 
software reliability analysis.  

The most natural approach considers that the 
reliability characteristics are independent of the software 
age. However, the performance of the software would 
decrease in time due to inappropriate management of the 
data structures (files, lists, trees and graphs, dynamic 
arrays). Therefore, the software without periodically 
maintenance, or rejuvenation, would loose fractions of 
initial running speed. This will affect the quality of the 
software from the customer point of view. 

In this paper the software reliability optimization 
problem is studied when complex architectures are used, 
and various constraints applied. Firstly, the classical 
optimization approach, described in [12], will be outlined. 
Then, some aspects on reliability prediction for component-
based software architectures will be discussed, and new 
formulas and interpretations will be given in the context of 
intuitionistic fuzzy paradigm [3, 10]. 

Finally, a discussion related to the practical usage of 
the proposed methods and conclusions will be provided. 

 
 
2 THE BASIC SOFTWARE RELIABILITY 
MODEL 
 

Following [12], let n be the number of software 
components,  the reliability system target (0 <  < 1) 
and T be the length of the mission interval (T > 0). Let us 
consider the exponential model, which is a good 
assumption when software rejuvenation is not used. For 

all j = 1, 2, …, n, let j be the failure intensity of the jth 
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component. Hence, the probability density function of the 
random variable giving the time to failure of the jth 
component is: 

fj(t) = jexp(-jt), 
 
with the corresponding reliability function: 
 

R(t) = exp( -jt). 
 

Let R(j; t) be the reliability of the jth component: 
R(j; t) = exp(-jt). For a serial composition, the 
reliability of the system can be computed as the product:  
 

R(1, 2, …, n; t) = );(
1

tR
n

j

j


 . 

 
If we consider information concerning the operational 

profile, T - the time mission, pi - the probability of 
executing the operation i, and ij - the time allocated to 
the component j, then the expected proportion of the total 
mission time that the software spends executing in 
component j, denoted by j, is given by 

 

j = ij

m

i
ip

1

 

 
Therefore, the reliability of the jth component with 

respect to the proportion of time it runs is 
 

)exp()exp();(
1
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i
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and the reliability of the integrated system with respect to 
time mission T is given by: 
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An important objective when we model the software 

reliability is linked to behavior prediction. The difficulty 
appears when consider the deployment context [14]. As 
Reussner et al. (2003) shown, "design and implementation 
faults of software have a different impact on the reliability 
of the software, depending on how frequently the faulty 
code is executed". If such probabilities can be estimated, 
the methodology described above can be used. Another 
aspect in component-based software engineering is related 
to component dependencies. The exact properties of some 
components are not known until deployment. The class of 
unknown components includes: operating system(s) 
modules, middleware, and network and transport services. 
The usage profile can be modelled with Markov chains, 
but this approach is not considered here.  

In the following sections we consider the 
intuitionistic fuzzy environment. Triangular and 
trapezoidal intuitionistic fuzzy numbers are used for 
reliability computing. 

 
 

3 INTUITIONISTIC FUZZY MODELLING 
 
3.1 From GFNs to IFNs 
 

The fuzzy sets were introduced in 1965 by Zadeh 
[17], while the intuitionistic fuzzy sets were considered, 
in 1983, by Atanassov [3].  

 
Chen [5], in 1985, represented a generalized fuzzy 

numbers (GFN) by a 5-tuple (a, b, c, d; w) of five real 
numbers, such that 0<w1 and a < b < c < d. The GFN 
denoted by A is a fuzzy subset of the real line R, whose 
membership function A satisfies the following 
conditions:  

1) A : R  [0,1];  
2) A(x)= 0, for - <x a;  
3) A is strictly increasing on [a, b];  
4) A(x) = w, for x [b, c];  
5) A is strictly decreasing on [c, d];  
6) A(x)= 0, for d  x < .  

According to [10], the membership model of a 
Generalized Triangular Fuzzy Number (GTFN), given by 
(a, b, c; w), can be written as: 
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For an universe of discourse defined by X, the 

intuitionistic fuzzy set (IFS) A in X is characterized by a 

membership function A(.) and a non-membership 
function A(.), where A : X  [0,1], and A : X  [0,1]. 
For each point x in X, A(x) (resp. A(x)) is the degree of 
membership (resp. non-membership) of x in A, with 

0A(x)+A(x)1. An intuitionistic fuzzy set becomes a 
fuzzy set if A(x) = 0 for all x in A.  

 
The operations on IFS can be introduced according to 

the generalized fuzzy set theory. Some examples follow: 
 

A  B = {(x, min(A(x),B(x)), max(A(x), B(x))), x X}; 
A  B = {(x, max(A(x),B(x)), min(A(x), B(x))), x X}; 
A + B = {(x, A(x)+B(x)-A(x)B(x), A(x)B(x)), x X}; 
AB = {(x, A(x)B(x), A(x)+B(x)- A(x)B(x)), x X}; 
 

An intuitionistic fuzzy number (IFN) can also be 
defined using the template of GTFNs. The most used 
IFNs are the Triangular Intuitionistic Fuzzy Numbers 
(TIFNs). The TIFN A is described by five real numbers 
(a1, a2, a3; a', a''), a'  a1  a2  a3  a'', and two 
triangular functions  



























otherwise ,0

for  ,

for  ,

)( 32
23

3

21
12

1

axa
aa

xa

axa
aa

ax

xA , 



JOURNAL OF SUSTENABLE ENERGY, VOL. 1, NO. 1, MARCH, 2010 

I.S.S.N. 2067-5538 © 2010 JSE 

and 
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Another important intuitionistic numbers have a 

trapezoidal shape. Let '
44321

'
1 aaaaaa  . A 

Trapezoidal Intuitionistic Fuzzy Number A in R (TrIFN), 

written as (a1, a2, a3, a4; 
'
1a , a2, a3, 

'
4a ), has the 

membership function  
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and the non-membership function 
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The arithmetic operation, denoted generically by *, of 

two IFNs, is a mapping of an input subset of RxR (with 
elements x = (x1, x2)) onto an output subset of R (with 
elements denoted by y). Let A1 and A2 be two IFN, and 
(A1*A2) the resultant of the operation *. Then: 

 



















































 Ryxx

xAxA

xAxA

y

yAA

T

xxy

xxy ,,

)]()([

)],()([

,

))(*( 21

2211*

2211*21

21

21
, 

with 

)]()([)( 2211*)*( 2121
xAxAy xxyAA   , 

and 

)]()([)( 2211*)*( 2121
xAxAy xxyAA   . 

 
The arithmetic operations on IFNs can be defined 

using the (, ) – cuts method. Let,   [0, 1] be fixed 
numbers such that  +   1. A set of (, ) - cut 
generated by an IFS A is defined by: 

 
A,  = {(x, A(x), A(x)), x  X, A(x)  , A(x)  }. 

 

The (, ) – cut of a TIFN is given by 
 

  )](),([)],(),([ '
2

'
121,  AAAAA  , 

 

where: 

i) )(1 A , and )('
2 A are continuous, monotonic 

increasing functions of , respective ; 

ii) )(2 A , and )('1 A  are continuous, monotonic 

decreasing functions of , respective ; 

iii) )1()1( 21 AA  , and )0()0( '
2

'
1 AA  . 

 
When using the 5-tuple notation, we obtain: 

 

)()( 1211 aaaA   , 

)()( 2332 aaaA   , 

)'()( 22
'
1 aaaA   , 

and  

)''()( 22
'
2 aaaA   . 

 
To fulfill the aim of this paper we need the following 

properties [10]: 
1. If TIFN A = (a1, a2, a3; a', a''), and k > 0, then the 

TIFN kA is given by (ka1, ka2, ka3; ka', ka''). 
2. If TIFN A = (a1, a2, a3; a', a''), and k < 0, then the 

TIFN kA is given by (ka3, ka2, ka1; ka'', ka'). 
3. If A = (a1, a2, a3; a', a'') and B = (b1, b2, b3; b', b'') are 

TIFNs, then the TIFN BA is defined by (a1+b1, 
a2+b2, a3+b3; a'+ b', a''+b''); 

4. If A = (a1, a2, a3; a', a'') and B = (b1, b2, b3; b', b'') are 
TIFNs, then the TIFN BA is defined by (a1b1, a2b2, 
a3b3; a'b', a''b''). 
The above results can be proved using the (, ) – 

cuts method. 
 

The (, ) – cut of a TrIFN is defined as usually, by  
 

  )](),([)],(),([ '
2

'
121,  AAAAA  , 

]1,0[,,1   , 

where  
)()( 1211 aaaA   , 

)()( 3442 aaaA   , 
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'
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and  

)()( 3
'
43

'
2 aaaA   . 

Also, the above operations defined for TrIFNs have 
similar properties: 

5. If TrIFN A = (a1, a2, a3, a4; 
'
1a , a2, a3, 

'
4a ), and k > 

0, then the TrIFN kA is given by (ka1, ka2, ka3, ka4; 

k '
1a , ka2, ka3, k

'
4a ). 

6. If TrIFN A = (a1, a2, a3, a4; 
'
1a , a2, a3, 

'
4a ), and k < 

0, then the TrIFN kA is given by (ka4, ka3, ka2, ka1; 

k '
4a , ka3, ka2, k

'
1a ). 

7. If A = (a1, a2, a3, a4; 
'
1a , a2, a3, 

'
4a ) and B = (b1, b2, 

b3, b4; 
'
1b , b2, b3, 

'
4b ) are TrIFNs, then the 

TrIFN BA is defined by (a1+b1, a2+b2, a3+b3, 

a4+b4; 
'
1

'
1 ba  , a2+b2, a3+b3, 

'
4

'
4 ba  ); 
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8. If A = (a1, a2, a3, a4; 
'
1a , a2, a3, 

'
4a ) and B = (b1, b2, 

b3, b4; 
'
1b , b2, b3, 

'
4b ) are TrIFNs, then the 

TrIFN BA is defined by (a1b1, a2b2, a3b3, a4b4; 
'
1

'
1ba , a2b2, a3b3, 

'
4

'
4ba ). 

 

3.2 Intuitionistic fuzzy software reliability 
 

For simplicity reason we assume that every 
component is called only once, but this is not a serious 
constraint.  
 
a) Using TIFNs 

Let S be a software system integrating a number of 
components according to a serial architecture,  

 
S = SEQ C1; C2; …, Cn; END. 

 
This is the case of single processor computer systems 

running the software during a period of time T. If Rj is the 
triangular intuitionistic fuzzy reliability of the jth 
component Cj, and RS is the triangular intuitionisc fuzzy 
reliability of the entire system (with n items), and Rj = 
(rj1, rj2, rj3; rj', rj''), then  

 

nS RRRR  21 , 

 
defined by (r1, r2, r3; r', r''), with: 
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If S is a software system composed by n items 

running in parallel:  
 

S = PAR C1; C2; … Cn; END, 
 
using the above notations, we evaluate the triangular 
intuitionistic fuzzy reliability of S by:  
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j
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defined by (r1, r2, r3; r', r''), with: 
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b) Using TrIFNs 

If Rj is the trapezoidal intuitionistic fuzzy reliability of 
the jth component, and RS is the trapezoidal intuitionisc 

fuzzy reliability of the entire serial system (with n items), 

and Rj = (rj1, rj2, rj3, rj4; 
'
1jr , rj2, rj3, 

'
4jr ), then  

 

nS RRRR  21 , 

 

defined by (r1, r2, r3, r4; 
'

1r , r2, r3, 
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4r ), with: 
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If S is a parallel software system composed by n items, 

using the above notations, we evaluate the trapezoidal 
intuitionistic fuzzy reliability of S by:  

 





n

j
jS RR

1

)1(1 , 

 

defined by (r1, r2, r3, r4; 
'

1r , r2, r3, 
'
4r ), with: 
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Using the above methodology intuitionistic fuzzy 

reliability formulas can be derived for hybrid software 
architectures. 

 
 
4 CONCLUSIONS 
 

In this paper we consider subjects like software 
reliability estimation based on user profile. Firstly we 
introduce the component-based software engineering 
paradigm as a new methodology for development and 
deployment of reliable, secure and high quality software. 
Next, based on probabilistic thinking and statistical 
testing we describe a reliability model for software 
systems when considering the operational profile. The 
imtuitionistic fuzzy paradigm is considered in the third 
section. Intuitionistic fuzzy sets, operations on IFS, 
triangular and trapezoidal intuitionistic fuzzy numbers are 
described and used to model the reliability of serial, 
parallel, and hybrid systems.  

 
The study presented here is relevant for architectures 

based on components. 
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