
JOURNAL OF SUSTENABLE ENERGY, VOL. 1, NO. 1, MARCH, 2010

I.S.S.N. 2067-5538 © 2010 JSE

INTUITIONISTIC FUZZY METHODS IN SOFTWARE
RELIABILITY MODELLING

ALBEANU G.*, POPENTIU-VLADICESCU FL.**

*Spiru Haret University, 13 Ion Ghica str., Bucharest, Romania, galbeanu@yahoo.com
**University of Oradea, 1 Universităţii str., Oradea, Romania, popentiu@imm.dtu.dk

Abstract: This paper considers the framework of
component-based software and illustrates the usage of
intuitionistic fuzzy numbers in imprecise software
reliability modeling and computing. It is shown how
intuitionistic triangular and trapezoidal fuzzy
numbers can be used in computing the intuitionistic
fuzzy reliability of serial, parallel and hybrid software
architectures.

Key words: component-based software development,
intuitionistic fuzzy numbers, reliability

1 INTRODUCTION

Component-based software design, implementation,
testing, and reusing are the most important steps of a
recent methodology facilitating agility in software project
management [1, 2]. It can be described by the usage of
reusable components as the building blocks for
constructing software [4]. According to [8], "software
assets, or components, include all software products,
from requirements and proposals, to specifications and
design, to user manuals and test suites". Also, the
software analysis depends on three assets [11]: code,
specification, and test received.

In order to establish the terminology used in this
paper, by software component we refer to any of the
following assets: functions (belonging to a reusable
library), modules (or classes), libraries (collections of
reusable functions), packages (collections of reusable
classes), and applications (programs to be reused by
“exec” service, including code, files, and databases). We
do not refer to any specification or tests, even these are
very important when analyze the software quality.

From viewpoint of software methodologies
paradigms, an important step toward efficient reuse of
software components consists of the evolution from
reusable function libraries to object-oriented class
libraries reaching a new stage called: reusable
application framework and platform [6].

The aims of component-based methodology are to
achieve multiple quality objectives related to structured-
ness efficiency, usability, consistency, conciseness,
completeness, portability, security, maintainability,
testability, and reliability. Other quality aspects refer to
the verification costs’ minimization, the software
reliability increase, and to the development time
reduction. Recently, new quality influential factors were
added: trust-ability, interoperability, transparency and

extensibility [2, 13]. For the aim of this paper only the
reliability characteristic will be considered.

According to [15], a software component is defined
as "a unit of composition with contractually specified
interfaces and explicit context dependencies only. A
software component can be deployed independently and is
subject to composition by third parties". The individual
components can be tested and evaluated independently [6,
7, 9]. The whole system reliability depends on the
reliability of every component and the architectural
model. Following the standard model, if the system
consists of n components with reliabilities Rj, j = 1, 2, …,
n, and an execution path is given, for instance: 1, 4, 3, 4,
2, 1, 4, 3, n, then the path reliability is
R1xR4xR3xR4xR2xR1xR4xR3xRn. The system reliability can
be estimated by averaging over all path reliabilities [9]. A
probabilistic approach based on the probabilities of using
the components will be described in the next section. The
approach is a special case of component based statistical
software reliability analysis.

The most natural approach considers that the
reliability characteristics are independent of the software
age. However, the performance of the software would
decrease in time due to inappropriate management of the
data structures (files, lists, trees and graphs, dynamic
arrays). Therefore, the software without periodically
maintenance, or rejuvenation, would loose fractions of
initial running speed. This will affect the quality of the
software from the customer point of view.

In this paper the software reliability optimization
problem is studied when complex architectures are used,
and various constraints applied. Firstly, the classical
optimization approach, described in [12], will be outlined.
Then, some aspects on reliability prediction for component-
based software architectures will be discussed, and new
formulas and interpretations will be given in the context of
intuitionistic fuzzy paradigm [3, 10].

Finally, a discussion related to the practical usage of
the proposed methods and conclusions will be provided.

2 THE BASIC SOFTWARE RELIABILITY
MODEL

Following [12], let n be the number of software
components,  the reliability system target (0 <  < 1)
and T be the length of the mission interval (T > 0). Let us
consider the exponential model, which is a good
assumption when software rejuvenation is not used. For

all j = 1, 2, …, n, let j be the failure intensity of the jth

JOURNAL OF SUSTENABLE ENERGY, VOL. 1, NO. 1, MARCH, 2010

I.S.S.N. 2067-5538 © 2010 JSE

component. Hence, the probability density function of the
random variable giving the time to failure of the jth
component is:

fj(t) = jexp(-jt),

with the corresponding reliability function:

R(t) = exp(-jt).

Let R(j; t) be the reliability of the jth component:
R(j; t) = exp(-jt). For a serial composition, the
reliability of the system can be computed as the product:

R(1, 2, …, n; t) =);(
1

tR
n

j

j


 .

If we consider information concerning the operational

profile, T - the time mission, pi - the probability of
executing the operation i, and ij - the time allocated to
the component j, then the expected proportion of the total
mission time that the software spends executing in
component j, denoted by j, is given by

j = ij

m

i
ip

1

Therefore, the reliability of the jth component with

respect to the proportion of time it runs is

)exp()exp();(
1

TTpTR jjjij

m

i
ij   



,

and the reliability of the integrated system with respect to
time mission T is given by:

)exp();,,,(
1 1

21 TpTR jij

n

j

m

i
in  

 

 .

An important objective when we model the software

reliability is linked to behavior prediction. The difficulty
appears when consider the deployment context [14]. As
Reussner et al. (2003) shown, "design and implementation
faults of software have a different impact on the reliability
of the software, depending on how frequently the faulty
code is executed". If such probabilities can be estimated,
the methodology described above can be used. Another
aspect in component-based software engineering is related
to component dependencies. The exact properties of some
components are not known until deployment. The class of
unknown components includes: operating system(s)
modules, middleware, and network and transport services.
The usage profile can be modelled with Markov chains,
but this approach is not considered here.

In the following sections we consider the
intuitionistic fuzzy environment. Triangular and
trapezoidal intuitionistic fuzzy numbers are used for
reliability computing.

3 INTUITIONISTIC FUZZY MODELLING

3.1 From GFNs to IFNs

The fuzzy sets were introduced in 1965 by Zadeh
[17], while the intuitionistic fuzzy sets were considered,
in 1983, by Atanassov [3].

Chen [5], in 1985, represented a generalized fuzzy

numbers (GFN) by a 5-tuple (a, b, c, d; w) of five real
numbers, such that 0<w1 and a < b < c < d. The GFN
denoted by A is a fuzzy subset of the real line R, whose
membership function A satisfies the following
conditions:

1) A : R  [0,1];
2) A(x)= 0, for - <x a;
3) A is strictly increasing on [a, b];
4) A(x) = w, for x [b, c];
5) A is strictly decreasing on [c, d];
6) A(x)= 0, for d  x < .

According to [10], the membership model of a
Generalized Triangular Fuzzy Number (GTFN), given by
(a, b, c; w), can be written as:


























otherwise. ,0

for ,

for ,

)(cxb
bc

xc
w

bxa
ab

ax
w

xw
A

For an universe of discourse defined by X, the

intuitionistic fuzzy set (IFS) A in X is characterized by a

membership function A(.) and a non-membership
function A(.), where A : X  [0,1], and A : X  [0,1].
For each point x in X, A(x) (resp. A(x)) is the degree of
membership (resp. non-membership) of x in A, with

0A(x)+A(x)1. An intuitionistic fuzzy set becomes a
fuzzy set if A(x) = 0 for all x in A.

The operations on IFS can be introduced according to

the generalized fuzzy set theory. Some examples follow:

A  B = {(x, min(A(x),B(x)), max(A(x), B(x))), x X};
A  B = {(x, max(A(x),B(x)), min(A(x), B(x))), x X};
A + B = {(x, A(x)+B(x)-A(x)B(x), A(x)B(x)), x X};
AB = {(x, A(x)B(x), A(x)+B(x)- A(x)B(x)), x X};

An intuitionistic fuzzy number (IFN) can also be
defined using the template of GTFNs. The most used
IFNs are the Triangular Intuitionistic Fuzzy Numbers
(TIFNs). The TIFN A is described by five real numbers
(a1, a2, a3; a', a''), a'  a1  a2  a3  a'', and two
triangular functions



























otherwise ,0

for ,

for ,

)(32
23

3

21
12

1

axa
aa

xa

axa
aa

ax

xA ,

JOURNAL OF SUSTENABLE ENERGY, VOL. 1, NO. 1, MARCH, 2010

I.S.S.N. 2067-5538 © 2010 JSE

and



























otherwise ,1

''for ,
''

'for ,
'

)(2
2

2

2
2

2

axa
aa

ax

axa
aa

xa

xA .

Another important intuitionistic numbers have a

trapezoidal shape. Let '
44321

'
1 aaaaaa  . A

Trapezoidal Intuitionistic Fuzzy Number A in R (TrIFN),

written as (a1, a2, a3, a4;
'
1a , a2, a3,

'
4a), has the

membership function




























otherwise ,0

for ,

for ,1

for ,

)(

43
34

4

32

21
12

1

axa
aa

xa
axa

axa
aa

ax

xA

and the non-membership function




























otherwise. ,1

for ,

for ,0

for ,

)(
'
43

3
'
4

3

32

2
'
1'

12

2

axa
aa

ax
axa

axa
aa

xa

xA

The arithmetic operation, denoted generically by *, of

two IFNs, is a mapping of an input subset of RxR (with
elements x = (x1, x2)) onto an output subset of R (with
elements denoted by y). Let A1 and A2 be two IFN, and
(A1*A2) the resultant of the operation *. Then:



















































 Ryxx

xAxA

xAxA

y

yAA

T

xxy

xxy ,,

)]()([

)],()([

,

))(*(21

2211*

2211*21

21

21
,

with

)]()([)(2211*)*(2121
xAxAy xxyAA   ,

and

)]()([)(2211*)*(2121
xAxAy xxyAA   .

The arithmetic operations on IFNs can be defined

using the (, ) – cuts method. Let,   [0, 1] be fixed
numbers such that  +   1. A set of (, ) - cut
generated by an IFS A is defined by:

A,  = {(x, A(x), A(x)), x  X, A(x)  , A(x)  }.

The (, ) – cut of a TIFN is given by

 )](),([)],(),(['
2

'
121,  AAAAA  ,

where:

i))(1 A , and)('
2 A are continuous, monotonic

increasing functions of , respective ;

ii))(2 A , and)('1 A are continuous, monotonic

decreasing functions of , respective ;

iii))1()1(21 AA  , and)0()0('
2

'
1 AA  .

When using the 5-tuple notation, we obtain:

)()(1211 aaaA   ,

)()(2332 aaaA   ,

)'()(22
'
1 aaaA   ,

and

)''()(22
'
2 aaaA   .

To fulfill the aim of this paper we need the following

properties [10]:
1. If TIFN A = (a1, a2, a3; a', a''), and k > 0, then the

TIFN kA is given by (ka1, ka2, ka3; ka', ka'').
2. If TIFN A = (a1, a2, a3; a', a''), and k < 0, then the

TIFN kA is given by (ka3, ka2, ka1; ka'', ka').
3. If A = (a1, a2, a3; a', a'') and B = (b1, b2, b3; b', b'') are

TIFNs, then the TIFN BA is defined by (a1+b1,
a2+b2, a3+b3; a'+ b', a''+b'');

4. If A = (a1, a2, a3; a', a'') and B = (b1, b2, b3; b', b'') are
TIFNs, then the TIFN BA is defined by (a1b1, a2b2,
a3b3; a'b', a''b'').
The above results can be proved using the (, ) –

cuts method.

The (, ) – cut of a TrIFN is defined as usually, by

 )](),([)],(),(['
2

'
121,  AAAAA  ,

]1,0[,,1   ,

where
)()(1211 aaaA   ,

)()(3442 aaaA   ,

)()('
122

'
1 aaaA   ,

and

)()(3
'
43

'
2 aaaA   .

Also, the above operations defined for TrIFNs have
similar properties:

5. If TrIFN A = (a1, a2, a3, a4;
'
1a , a2, a3,

'
4a), and k >

0, then the TrIFN kA is given by (ka1, ka2, ka3, ka4;

k '
1a , ka2, ka3, k

'
4a).

6. If TrIFN A = (a1, a2, a3, a4;
'
1a , a2, a3,

'
4a), and k <

0, then the TrIFN kA is given by (ka4, ka3, ka2, ka1;

k '
4a , ka3, ka2, k

'
1a).

7. If A = (a1, a2, a3, a4;
'
1a , a2, a3,

'
4a) and B = (b1, b2,

b3, b4;
'
1b , b2, b3,

'
4b) are TrIFNs, then the

TrIFN BA is defined by (a1+b1, a2+b2, a3+b3,

a4+b4;
'
1

'
1 ba  , a2+b2, a3+b3,

'
4

'
4 ba );

JOURNAL OF SUSTENABLE ENERGY, VOL. 1, NO. 1, MARCH, 2010

I.S.S.N. 2067-5538 © 2010 JSE

8. If A = (a1, a2, a3, a4;
'
1a , a2, a3,

'
4a) and B = (b1, b2,

b3, b4;
'
1b , b2, b3,

'
4b) are TrIFNs, then the

TrIFN BA is defined by (a1b1, a2b2, a3b3, a4b4;
'
1

'
1ba , a2b2, a3b3,

'
4

'
4ba).

3.2 Intuitionistic fuzzy software reliability

For simplicity reason we assume that every
component is called only once, but this is not a serious
constraint.

a) Using TIFNs

Let S be a software system integrating a number of
components according to a serial architecture,

S = SEQ C1; C2; …, Cn; END.

This is the case of single processor computer systems

running the software during a period of time T. If Rj is the
triangular intuitionistic fuzzy reliability of the jth
component Cj, and RS is the triangular intuitionisc fuzzy
reliability of the entire system (with n items), and Rj =
(rj1, rj2, rj3; rj', rj''), then

nS RRRR  21 ,

defined by (r1, r2, r3; r', r''), with:





n

j
jii rr

1

, i = 1, 2, 3, 



n

j
jrr

1

'' , and 



n

j
jrr

1

'''' .

If S is a software system composed by n items

running in parallel:

S = PAR C1; C2; … Cn; END,

using the above notations, we evaluate the triangular
intuitionistic fuzzy reliability of S by:





n

j
jS RR

1

)1(1 ,

defined by (r1, r2, r3; r', r''), with:





n

j
jii rr

1

)1(1 , i = 1, 2, 3,





n

j
jrr

1

')1(1' ,

and





n

j
jrr

1

'')1(1'' .

b) Using TrIFNs

If Rj is the trapezoidal intuitionistic fuzzy reliability of
the jth component, and RS is the trapezoidal intuitionisc

fuzzy reliability of the entire serial system (with n items),

and Rj = (rj1, rj2, rj3, rj4;
'
1jr , rj2, rj3,

'
4jr), then

nS RRRR  21 ,

defined by (r1, r2, r3, r4;
'

1r , r2, r3,
'
4r), with:





n

j
jii rr

1

, i = 1, 2, 3, 4, 



n

j
jrr

1

''
1 , and 




n

j
jrr

1

'''
4 .

If S is a parallel software system composed by n items,

using the above notations, we evaluate the trapezoidal
intuitionistic fuzzy reliability of S by:





n

j
jS RR

1

)1(1 ,

defined by (r1, r2, r3, r4;
'

1r , r2, r3,
'
4r), with:





n

j
jii rr

1

)1(1 , i = 1, 2, 3, 4,





n

j
jrr

1

'
1

'
1)1(1 ,

and





n

j
jrr

1

''
4

'
4)1(1 .

Using the above methodology intuitionistic fuzzy

reliability formulas can be derived for hybrid software
architectures.

4 CONCLUSIONS

In this paper we consider subjects like software
reliability estimation based on user profile. Firstly we
introduce the component-based software engineering
paradigm as a new methodology for development and
deployment of reliable, secure and high quality software.
Next, based on probabilistic thinking and statistical
testing we describe a reliability model for software
systems when considering the operational profile. The
imtuitionistic fuzzy paradigm is considered in the third
section. Intuitionistic fuzzy sets, operations on IFS,
triangular and trapezoidal intuitionistic fuzzy numbers are
described and used to model the reliability of serial,
parallel, and hybrid systems.

The study presented here is relevant for architectures

based on components.

JOURNAL OF SUSTENABLE ENERGY, VOL. 1, NO. 1, MARCH, 2010

I.S.S.N. 2067-5538 © 2010 JSE

REFERENCES

1. G. Albeanu, H. Madsen, and A. Averian, On the influence of
software vulnerabilities on software reliability. The case of open
source component based software. In R. Bris, C. Guedes Soares,
S. Martorell (eds.), Reliability, Risk and Safety: Theory and
Applications, Proceedings of ESREL Conference, Prague, 7-10
September 2009 , Vol. 2, 1341-1346. CRC Press/Balkema,
Taylor and Francis Group, London, UK, 2009.
2. G. Albeanu. Agile CMMI for e-learning software
development. In Roceanu I (coord.), Jugureanu R., Stefan V.,
Popescu V. & Radu C. (eds.), Proceedings of the 5th
International Scientific Conference eLSE 2009 (Bucharest,
April. 09-10, 2009), 135-142. " Carol I" National Defence
University P. H. , 2009.
3. K.T. Atanassov, "Intuitionistic Fuzzy Sets", Physica-Verlag,
Heidelberg, New York, 1999.
4. A. Averian, G. Duda, and G. Albeanu, Quality Assurance for
Agile Component-Based Software Development, In H Pham, T
Nakagawa (eds.), Proceedings of the 15th ISSAT International
Conference on Reliability and Quality in Design, San Francisco,
California, USA, August 6-8, 2009, 100-104.
5. S.H. Chen, Operations on fuzzy numbers with function
principal, Tamkang J. Management Science, 6(1), 1985, 13-25.
6. J.Z. Gao, H.-S. J. Tsao, and Y. Wu, "Testing and Quality
Assurance for Component-Based Software", Artech House,
Boston, London, 2003.
7. H.-G. Gross, "Component-Based Software Testing with
UML", Springer-Verlag, Berlin, Heidelberg, 2005.

8. K.S. Jasmine, R. Vasantha, DRE – A Quality Metric for
Component based oftware Products, World Academy of Science
and Technology, 34, 2007, 48-51.
9. J.-H. Lo, S.-Y. Kuo, M.R. Lyu, and C.-Y. Huang, Optimal
Resource Allocation and Reliability Analysis for Component-
Based Software Applications, Proceedings of the 26th Annual
International Computer Software and Applications Confereence,
IEEE Computer Society, 2002.
10. G.S. Mahapatra, Reliability Optimization in Fuzzy and
Intuitionistic Fuzzy Environment, PhD Thesis, Bengal
Engineering and Science University, Shibpur, India, 2009.
11. J. May, "Component-Based Software Reliability Analysis",
Department of Computer Science, University of Bristol, CSTR-
02-2002, 2002.
12. Fl. Popentiu-Vladicescu, G. Albeanu, Optimal Reliability
Allocation for Large Software Projects. In Proceedings of the
8th Int. Conf. Opt. Electrical & Electronic Equipment, II, 601-
606, The Transilvania University of Brasov, 2002.
13. F. Popentiu, G. Albeanu, On the Software Trustability
Assessment, Proc. Conf. KONBIN’01 Safety&Reliability,
Szczyrk-Poland, vol. 1, 2001, 5-8.
14. R.H. Reussner, H.W. Schmidt, I.H. Poernomo, Reliability
prediction for component-based software architectures, The
Journal of Systems and Software, 66, 2003, 241-252.
15. C. Szyperski, "Component Software - Beyond Object
Oriented Programming", ACM Press, 1998.
16. I. Vaduva, G. Albeanu, "Introduction to fuzzy modelling" (in
romanian), Bucharest Publishing Press, 2004.
17. L.A. Zadeh, Fuzzy sets, Information and Control, 8, 1965,
338-353.

