
JOURNAL OF SUSTAINABLE ENERGY VOL. II, NO. 3, SEPTEMBER, 2011 

ISSN 2067-5534 © 2011 JSE 73

THE POSSIBILITY OF APPLICATION OF CHAOS THEORY IN  
ASSESSING THE FUNCTIONING OF ELECTRICAL 

DISTRIBUTING SYSTEMS 
 

APARATU S. 
State Agrarian University of Moldova, Agricultural Engineering and Auto Transportation 

PhD student (s.aparatu@gmail.com) 
 
 
 

Abstract - The article is focused on determining the 
possibility to use the chaos theory in analyzing the 
operation of electrical distribution systems. This 
possibility is analyzed based on a simple model of a 
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1. INTRODUCTION 
 

Chaos theory has started in Henri Poincaré’s tests on 
mathematical modeling of mechanical systems 
instability, in the early twentieth century. It was 
developed together with the improvement of computers 
and increase consequent of their computing power. This 
theory has provided the means to study complex systems. 
It has found applications in many diverse fields, from the 
most diverse, and has revolutionized scientific 
knowledge. 

The name "chaos theory" comes from the fact that 
the systems that theory describes are apparently 
disordered, but chaos theory actually searches for internal 
order in these apparently random data. 

The first true experimenter of chaos theory was a 
meteorologist Edward Lorenz. In 1961, trying to develop 
a mathematical model to predict the weather, he found 
that the evolution of the model was different in two 
consecutive simulations whevw the initial conditions 
different only in 0.000127 (Fig. 1) 

 

 
Fig. 1. Curves representing the evolution of Edward 
Lorenz's model. The difference between the initial 

conditions is only 0.000127 [1] 
 

According to the dictionary, a physical system has a 
chaotic dynamics, if its behavior depends sensitively on 
its initial conditions, that is, if similar systems start up 
with values close to the initial conditions, they can end 
up in very different states. 

But when science calls a system chaotic, it normally 
implies two additional requirements: 

- the dynamics of the system should be relatively 
simple, in the sense that it could be expressed in 
the form of a mathematical expression having 
relatively few variables 

- the geometry of the system’s possible 
trajectories has a certain clear aspect, often 
characterized by a strange attractor [2]. 

 
 
2. CHAOTIC DYNAMIC SYSTEMS 
 
2.1. Using phase space to represent physical 
systems dynamics in a simple form 

 
Phase space is a way to view system status. If we 

want to visualize the trajectory of a body motion, we 
write the equations of motion (say, for a plan movement) 
ox and oy axes and out of both equations we will 
eliminate the time variable. In the phase space, there is 
not visualized the body’s trajectory (i.e. x-y coordinate 
dependence), but the impulse dependence on the 
coordinate. 

In physics, we operate with the representation of 
motion in the impulse-coordinate plan for the following 
reason: any mechanical movement can be traced as a 
succession of changes of kinetic energy and potential 
energy. On the other hand, the kinetic energy is 
determined by object’s speed (impulse) and potential 
energy by object’s position. It is easier describing the 
motion taking into consideration the kinetic energy 
(impulse) and potential energy (position) is convenient, 
due to the fact that total energy is conserved. Thus, in an 
“impulse-position” representation state, and respectively, 
object's energy can be better tracked. The following 
figure is an example in this sense. 

 
A simple linear oscillator, described in phase 

space 
 
 
 
 
 

 

Fig. 2. Linear harmonic oscillator 
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If we recall the mathematical expressions of kinetic 
energy and potential energy for an oscillator, the energy 
conservation law is the following: 

 
2 2
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tot kin pot
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E E E const
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If we rewrite this relationship by highlighting the 

impulse and position and divide them by total energy, we 
get the following equation: 
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Or even close to what we want to obtain: 
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This relationship that seems to be a complicated is 

actually the equation describing an ellipse: 
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where x and y are the two coordinates of a point on the 
ellipse and a and b are two semiaxis of the ellipse (Fig. 
3). 

If we look at the ellipse equation and to the 
previously obtained equation for oscillator, we see that 
they both have the same mathematical form in which we 
can recognize two semiaxis a and b: 

 

2 totE
a

k
  and 2 totb mE   (5) 

 
Point P (see Fig. 3) having these coordinates, on the 

"impulse-position” chart is called figurative point and 
describes by its motion on the ellipse, the states the 
subject bears during the time of oscillation. Thus this 
description is done in phase space and the ellipse is 
called the trajectory in phase space. 

Unlike trajectory in phase space for the fall of 
bodies, the trajectory in phase space for oscillatory 
movement (undepreciated) is an ellipse, ie a closed 
curve. An interesting property can be observed if we 
calculate the area of this ellipse. Ellipse area is given by 

Area= π·a·b (it is noted that for a circle a = b and the 
relationship turns into the known formula of circle's area 
π·a2). If we introduce the expressions a and b in the 
formula of the area described by the ellipse trajectory in 
phase space, we get: 
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If the frequency of a harmonic oscillator is given by 

the formula: 
 

1
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then, the area described by the oscillator trajectory in 
phase space will be: 

 

totE
Area


    (8) 

 
This remarkably simple relationship shows a number 

of things worth to be noted: 
• if total energy increases or decreases, then the 

ellipse which describes the motion will have a greater or 
less area, by proportional increasing or decreasing of the 
semiaxis; 

• if this area should remain constant, the 
movement frequency and total energy remain 
proportionate; 

From the first observation we can easily understand 
what happens if, for example, the oscillator loses energy, 
ie it is a damped oscillator (similar to all real oscillators 
that are not maintained). 

In this case, the shape of the trajectory in phase 
space will be only approximately elliptical, because the 
loss of energy (continuous) will be felt by the continuous 
decrease of the two semiaxis and we’ll obtain a spiral 
trajectory (Fig. 4). 

 
The description in phase space of the dynamics 

evolution of a system, as we have seen so far, seems to 
not bring something important in better understanding of 
the system evolution. In fact, if the system is more 
complicate, its description in phase space may reveal 
issues that would otherwise be difficult to be observed. 
 
 

Fig. 3. Oscillatory movement in space-time diagram 
and in phase space. Oscillation presented in the 

coordinates x - t and the path in phase space of the 
oscillator 

p 

Fig. 4 Damped oscillatory motion in space-time 
diagram and in phase space. Oscillation presented in 
the coordinates x-t and trajectory in phase space for 

damped oscillator. 
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2.2 The attractor - a feature of the geometry of 
the possible trajectories of chaotic systems 
 

The attractor is characterized by a clearly defined 
trajectory in phase space that can be reached on 
equilibrium; regardless the area of the phase space the 
system development starts [3]. For clarity we’ll consider 
a simple model, idealized, based on a zone of electrical 
distribution system. 

It is assumed that in a certain area of an electrical 
distribution system (EDS) there are a lot of consumers 
(traders) who use electricity to produce products that are 
subsequently sold on the market in full volume. In the 
absence of difficulties of electricity supply, each 
economic agent produces and develops into a normal 
rhythm. We describe this situation by a dynamical 
number of the production lines that exist in that area of 
the EDS at a time certain given. We note this number - x. 
To write the equation that describes the evolution of the 
production lines number, ie the variation of x in time, 
we’ll have to "construct an equation" that after being 
solver will tell us what happens to the number of 
technological lines. For this purpose, let’s to see what are 
the factors influencing the increase or decrease of this 
number. 

Because there is sufficient spare capacity of the 
electrical distribution lines in this area, means that the 
number of new production lines that will appear in a unit 
time (one year) will be proportional to the number of 
existing technological lines in the previous year. We 
write this as follows: 

 

2 1
1

2 1

x x
cx

t t





  (9) 

 

Here 
2 1t t    is a unit of time (one year), 1x is 

the number of technologic lines of previous year, 2x  is 

the number of technologic lines in the current year, and c 
is a constant. 

This equation is read as follow: increasing 2 1x x  

the number of technologic lines per unit time , is 
proportional to the number of technological lines of the 
previous year. The coefficient c is a constant that 
indicates (describe) the speed of increasing number of the 
technological lines. If we rewrite the above equation as 
follows: 

 

2 1 1x x cx    or  
2 1 1x x cx     (10) 

 
the evolution can be calculated and interpreted simple. 

The relationship shows that every year the number of 

technologic lines (TL) increases with the amount
1cx . If 

c=0 the number remains unchanged in time. If c> 0, the 
number of lines increase, if c <0, the number will 
decrease. For example we choose 

1 1000x   and 

0,01c  . It means that after the first year we have 

2 1000 0,01 1000 1 1000 10 1010x        TL. In the next 

generation (and we always note, every two consecutive 

years, previous year with 1x  and the year that appears 

with 2x ): 
2 1010 0,01 1010 1 1020,1x       TL. If we 

continue the calculations we obtain the following figures 
for the successive years the number of TL: 1030.301, 
1040.60401, so on. After a long calculation we see that 
the number of TL begins to grow more rapidly: It is 
normal because the growth is accelerating when the 
capacity (and thus the profit) increases. Data can be 
placed on a graph, as in Fig. 5 

 

 
Fig.5 Time evolution of the number of 

technological lines 
 
You can see here that for a factor of 0.01, after 100 

years, the number of TL gets bigger that 2500 units, but 
the factor of only five times bigger, c = 0.05, after 100  
years the number reached 1.5 x10 5 = 150 000 TL. 
Growth is very rapid at higher growth factors. What is 
means coefficient of 0.05? It means the emergence of 
five new lines in a year starting out of the first 1000. This 
factor is actually quite small. It would be reasonable to 
consider that on average appears least one TL from two 
initial lines after a year, ie a factor of 50% (= 0.5). In this 
situation is clearly that the increasing of TL number is 
more rapidly. It takes only 10 years to reach a total of 
150 000 LT! 

The studied growth mode is clearly exponentially. 
This model is valid for any system whose size or 
population growth in unit time is proportional to the sizes 
of the previous time unit. 

But what is really happening with businesses? 
Businesses, such an exponential growth, will soon have a 
problem, will not be fully insured with electricity since 
transmission capacity of lines in the area will reach to 
limit! Businesses will suffer from a lack of energy, and 
growth will slow, ie the coefficient c will decrease. How 
does this model take into account the effect of the 
coefficient altering? It can be assumed that the 
coefficient decreases with increasing number of TL so 
that to a maximum number (limit) of their quantity, it 
will no more increase (ie c is equal to zero). If this effect 
is taken into account, the equation that describes the 
technological changes in the number of lines can be 
written (after some mathematical changes) in the 
following form: 

 

 4 1X X X    (11) 
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where X is the number of production lines now expressed 
as relative to the maximum possible TL (X = 1 is the 
maximum value and X = 0 indicates the absence of TL) 

and   is in role of growth factor. Above equation is 
called logistic equation [4], describing the case of the 
limited amount of energy (electricity) for the economic 
agents in the area. 

Coefficient   is also known as the control 
parameter for this model, it controls the changing 
dynamics of increasing technological lines. The reason of 
this election is not essential to describe what happens in 
this case. Phase space in this case is reduced to the 
tracking the sequence of states to each year. Obviously 
talking about years, we can have states which we define 
to one or other year and we can't talk about a fractionated 
"year", such as 2.3 or 15.6 years! 

Therefore, the states sequence chart will draw the 
points that represent the states at the time, and the lines 
connecting the states have no other interpretation than to 
enable us easy to follow the developments from one state 
to another. 

If we perform calculations on the same model as the 
previous one, we can get the following ongoing events of 
the logistic model described in phase space. The 
calculation can be done with a simple program written in 
Excel. 

In graphs that are shown below is described how the 
number of technology lines varies depending on the time 
for different control parameter values. 

The graphs correspond to a control parameter that 
has values: λ = 0.9 (represent a continuous decrease to 
zero)(Fig. 6,a), 2.60 (steady state with a period) (Fig. 6, 
b), 3, 20 (steady state with period 2) (Fig. 6, c), 3.52 
(steady state with period 4)(Fig. 6, d), 4.00 (chaotic 
behavior, Fig. 6, e), 5.00 (stationary state to step 21 then 
follows a small amplification and at 34 step comes out of 
stability)(Fig. 6, f). 

 

 
 

a) 
 

 
 

b) 
 

 
 

c) 
 

 
 

d) 
 

 
 

e) 
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f) 
Fig. 6. – Evolution under the logistic model 

 

Generalizing, we can say that on a phenomenon that 
follows a logistic type model at the control parameters λ> 
3.52 the system takes unpredictable developments! 

In the following tables is showed how varies the 
evolution of the system if it begin at different initial 
value, X0=0.35 and X0=0.4. Evolution is given for three 
values of control parameter – λ = 2; λ = 1+√5; λ=4. 

Table 1  
t λ=2 λ=1+√5 λ=4 
0 0,40000 0,40000 0,40000 
1 0,48000 0,77666 0,96000 
2 0,49920 0,56133 0,15360 
3 0,50000 0,79684 0,52003 
4 0,50000 0,52387 0,99840 
5 0,50000 0,80717 0,00641 
6 0,50000 0,50368 0,02547 
7 0,50000 0,80897 0,09928 
8 0,50000 0,50009 0,35768 
9 0,50000 0,80902 0,91898 
10 0,50000 0,50000 0,29782 
11 0,50000 0,80902 0,83650 
12 0,50000 0,50000 0,54707 
13 0,50000 0,80902 0,99114 
14 0,50000 0,50000 0,03514 
15 0,50000 0,80902 0,13561 

 
Table 2  

t λ=2 λ=1+√5 λ=4 
0 0,35000 0,35000 0,40001 
1 0,45500 0,73621 0,96001 
2 0,49595 0,62847 0,15357 
3 0,49997 0,75561 0,51995 
4 0,50000 0,59758 0,99841 
5 0,50000 0,77820 0,00636 
6 0,50000 0,55856 0,02526 
7 0,50000 0,79792 0,09850 
8 0,50000 0,52180 0,35518 
9 0,50000 0,80748 0,91610 
10 0,50000 0,50307 0,30743 
11 0,50000 0,80899 0,85167 
12 0,50000 0,50006 0,50531 
13 0,50000 0,80902 0,99989 
14 0,50000 0,50000 0,00045 
15 0,50000 0,80902 0,00180 

The first table corresponds to the evolution of the 
system based on the initial value X0=0.4 and the second 

corresponds to the initial value X0=0.35. 
The bolded values highlight the differences in 

development between the two cases. What is obviously is 
that when the control parameter is λ=4, the evolution of 
the system is no predictable in the sense that small 
changes in initial condition completely change its further 
evolution. 

 

 
3. CONCLUSIONS 

 
Analyzing the obtained results can be extracted 

certain important conclusions from this simple 
(mathematically) experiment: 

a. Although the system state is described by a 
simple and well defined equation (logistic equation), this 
system development can be predictable or unpredictable, 
depending on the value of control parameter, at the 
control parameter values greater than one critical, the 
system behave chaotic. We say we deal with 
deterministic chaos. Word "deterministic" comes from 
the fact that we have a correct mathematical equation 
describing the system, but system behavior in this regime 
is unpredictable. 

b. System's evolution is strongly dependent 
(especially in the corresponding region of control 
parameter greater than critical) the initial condition. This 
feature is sometimes called “the butterfly effect”, 
discovered by Edward Lorenz. The effect can be 
expressed as follows: small changes in initial conditions 
due, for example, to the beating of wings of a butterfly 
somewhere on the globe, can lead to dramatic changes in 
future weather condition, in another part of the globe.  

The effect is called also the sensitivity to initial 
conditions. If such a dramatic effect can occur even in a 
simple system, then to more complicated systems this 
effect must certainly be present. 

How important are this observations can be 
understood from the following example. We know today 
that the evolution of life on a planet (for eg Earth) is 
subject to climatic stability on large time intervals (or 
planetary geological time). It was concluded that the 
Earth today could be the cradle of life because the 
climate was relatively stable over a long stretch of time. 
It was noted that other planets have not received such a 
situation. The reason why Earth has been in this 
favorable situation was due to the fact that at one time, 
cosmic time scale, the Earth captured the Moon. 
Capturing of Moon have stabilized Earth's rotation axis 
allowing a slow, but stable, evolution of climate and so 
the life could to appear, to stabilize, to grow and get 
where it is now [5]. Otherwise the movement of planets 
around the sun would have been so chaotic and 
unpredictable so that the climate in long-term was not 
stable, there would have drastic changes as we find that 
there are on Mercury, Mars or Venus, for example. 

c) The cause of this sensibility to initial conditions 
and resulting in unpredictable behavior of the system is 
given by the nonlinear nature of the system. For any 
nonlinear physical system, we can expect that under 
certain conditions it to pass into a regime of deterministic 
chaos so its subsequent changes cannot be predicted. We 
insist that unpredictable system's evolution is not 
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determined by the complexity of any system or imperfect 
knowledge of initial conditions, nor ignorance of the law 
of evolution and not by the reasons of bad mathematical 
calculations. Unpredictability have "organic" nature, that 
lies in the very nature of things or phenomena. 

d. Since most real systems are nonlinear (and do 
not refer to linear models used to study the phenomena) 
aspects of deterministic chaos are ubiquitous. Only 
simple approximations are linear and predictable. 
However, some systems are unpredictable even for a 
short term trend (such as weather) or a long term trend 
(such as the cosmic phenomena). It follows that we need 
to know to what point we can count on a acceptable 
predictability and point at which we no longer have that 
possibility. The study of nonlinear dynamics phenomena 
may give an answer to this question. It required a precise 
knowledge of the system and taking into account those 
aspects which are nonlinear, although apparently these 
effects (or terms in the equations system) are negligible.  

Is found that they are not negligible. The role of 
nonlinear dynamics is to indicate the limits to which 
approximations can give predictable results. 

e. Electrical distribution systems are not an 
exception to those listed above. If we analyze the 
dynamics of the distribution system, taking into account 
the finest details, we find that many of the changes that 
occur in system, sometimes are overlapping and mutually 

amplifies theirs effect and approaching so the system 
regime at a bifurcation point where its behavior can 
become chaotic. 
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