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Abstract: This study is another version of the work 
described in our paper accepted at the PSAM11 & 
ESREL 2012 international conference where a non-
linear ensemble system is used to develop a new model 
for predicting wind speed in short-term time scale. 
Regardless of the recent advancements in the re-
search of prediction models, it was observed that 
different models have different capabilities and also no 
single model is appropriate under all situations. The 
idea behind EPS (ensemble prediction systems) is to 
take advantage of the features of each subsystem to 
confine diverse patterns that exist in the dataset. The 
low prediction errors demonstrate the increased 
prediction accuracy. 
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1. INTRODUCTION 
 

Wind power prediction is of vast importance for the 
safety and stabilization of grids (Moyano et al. 2009). The 
most intricate problem now is to improve the prediction 
accuracy. BP (Backward Propagation) neural networks 
have been used extensively in wind power prediction but 
results have shown slow convergence rate (Gaofeng et al. 
2008).   

In the technical literature, we can find two major 
approaches to forecast wind power:  

1. Physical methods: Require many physical 
considerations to gain the best prediction precision. The 
input variables will be physical or meteorology 
information. They present advantages in long-term 
prediction  

2. Statistical methods: Aspire at finding a relationship 
between the on-line measured power data. They will use 
the historical data of the wind farm. They present 
advantages in short-term prediction.  

 
Ensembles are prediction techniques used to produce 

a representative sample of a dynamic system possible 
future state (Raj Kiran et al. 2011). Sometimes the EPS 
may use different models for different members, or 
different formulations of a model.  

The multiple simulations show two main sources of 
uncertainty in prediction models   

 Errors introduced by chaos or sensitive 
dependence on the initial conditions.   

 Errors introduced because of imperfections in the 
model.  

 
This article is structured as follows: we focus on the 

proposed EPS and its architecture. The next section 
contains numerical results from a real world case study, 
particularly our EPS prediction results. We tested the 
proposed EPS using data sets collected from the ANM 
(National Meteorology Administration) website. In the 
last section, we raise some interesting conclusions.  
 
 
2. THE PROPOSED ENSEMBLE PREDICTION 
SYSTEM 

 
The time scales we use in this short-term prediction 

solution are in the order of some days for the forecast 
horizon and from minutes to hours for the time-step. For 
the purpose of time series prediction, an ensemble can be 
considered to be a general nonlinear mapping between a 
subset of the past time series and the future time series 
values. The proposed EPS is presented in Fig. 1. In the 
following sections we will briefly describe each 
prediction model. For more details about their architecture 
and function see the referred papers. 

 
 

 
Figure 1. The EPS 

 
2.1. The RQVM 
 
The RQVM (Recurrent Quadratic Volterra Model) is 

similar to the one proposed by Duehee Lee in 2011. His 
paper shows a way to use the recurrent quadratic Volterra 
system to predict the wind power. The RQVM is a 
second-order polynomial equation that uses the output 
data as feedback recursively, after passing a time-delay 
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filter. The Volterra system is extracted from the weights 
of the Recurrent Neural Network. In order to build 
Volterra kernels from the combination of weights, the 
activation function is approximated to the high order 
polynomial function using the Lagrangian interpolation. 
The memory of the Volterra system is identified using the 
PACF Partial Autocorrelation Function. The Volterra 
system can analyze order and memory and it captures the 
output power patterns that can be used for short-term 
prediction. For simplicity, it is assumed that the system is 
causal and homogeneous. The truncated recurrent 
Volterra system V (P, M) with the finite order of P and 
the finite memory of M is defined as.  
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n = M+1, M+2, ...    (1) 
 
Where h0 is the constant, which is zero in this case, and hi 
(k1, ... ki) is the set of Pth order Volterra kernel 
coefficients. Consecutively, to reduce the computational 
complexity, the kernels should be assumed as:  
 
hp (k1,  ... kp) = 0 if  k1 > ... > kp  (2) 

 
The kernels hi are assumed to be a symmetric function 
with respect to all permutations of the indices ki, . . . ,kP. 
As a result, one kernel per each permutation is enough to 
describe the Volterra system. The other kernels become 
zero. The input signal is Xn-1 = {x (n − 1), x (n − 2), . . . ,x 
(n − M)}, and the output signal is the x(n). All signals and 
kernels are real numbers. Since it is difficult to categorize 
errors in the truncated Volterra model as natural system 
errors or higher order term errors, the author assumed 
higher order terms are absorbed into the Volterra system 
errors. The number of Volterra kernels of each order can 
be calculated by using the Combination with a Repetition. 
The equation is as follows: 
 
 

)!(!

!

MP
PM 

   (3) 

 
The order is limited to the second order, and the memory 
is limited to 20. The RNN in this model has three layers: 
one input layer, one hidden layer, and one output layer. 
The input layer receives as many input neurons as the 
number of memory, and input neurons are in the tap-
delayed form. One hidden layer has an arbitrary number 
of neurons which is heuristically decided by the number 
of Volterra kernels. Hidden layers receive”net input” 
which is the sum of the input values that are multiplied by 
their corresponding weights. Hidden neurons use the 

tangent hyperbolic function tanh as the activation 
function. The output layer has only one neuron and uses a 
linear activation function. 
 
2.2. ANN Prediction Model Based on MTS Algorithm 
 

As the second model in our ensemble system we used 
a model analogous with the one described by Shuang Han 
et al. 2011.  They have put forward a wind power 
prediction model build with a BP neural network 
optimized by Tabu search algorithm with memory 
function. The basic principle of ANN (Artificial Neural 
Network) based on MTS (Multiple Tabu Search) 
algorithm is to optimize neural network’s connection 
weights using TS algorithm which has memory function. 
Achieve the global optimal solution using the global 
search capability of TS algorithm and thus avoid getting 
into local minimal.  

Suppose the error function of some BP network is: f 
= f (Wh, Wo, Өh, Өo) where:  

 Wh, are connection weights between input layer 
and hidden layer. 

 Wo, are connection weights between hidden layer 
and output layer. 

 Өh, is the threshold value of hidden layer neurons. 
 Өo  is the output layer neurons. 

 
The optimization for network is the process of solving 
min (f (Wh, Wo, Өh, Өo)). For the expediency of 
representation, symbol Δ is used to denote vector (Wh, Wo, 
Өh, Өo).  

The following is the procedure of optimizing neural 
network with TS algorithm: 

1. Initialize Δ; endow every component of Δ with a 
little random number denoted Δinitial.  

2. Δbest denotes the optimal solution and Δnow 
denotes the current solution. Δbest = Δinitial = Δnow. 

The vector Δnow is storied in the Tabu table.  
3. Produce a neighbourhood solution Δnew of Δinitial 

and calculate f (Δnew) and f (Δbest).  
4. If f (Δnew) has not varied for many times 

continuously n stop the algorithm and output the 
result, else go on with the next step.  

5. If f (Δnew) < f (Δbest) then Δbest = Δnew. The vector 
Δnew enters Tabu table and the memory point in 
table backward in turn. If f (Δnew) >= f (Δbest) we 
need to judge if Δnew is within some memory 
point’s given neighbourhood. If it is a 
neighbourhood solution vector Δnew is 
reconstructed. If it isn’t then Δnow = Δnew and 
update the Tabu table at the same time.  

6. Produce a neighbourhood solution Δnew of Δnow 

and go to step (4).  
7. The optimized weight vectors and threshold 

value vectors are obtained when the training 
finished. 
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The inputs of the BP network are: wind speed, wind 
direction, air temperature, air pressure, relative humidity. 
Less neurons in the hidden layer result in worse 
prediction precision. On the contrary, over fitting may 
occur with too many hidden neurons and this result in 
poor prediction precision and long training time. The 
common method is to adjust it in training process. The 
optimal number is corresponding to the minimal error. 
 
2.3  Artificial neural network–Markov chain model 
 

In the model proposed by S.A. Pourmousavi Kani et 
al. 2011, artificial neural network (ANN) and Markov 
chain (MC) are used to develop a new ANN–MC model 
for predicting wind speed in very short-term time scale. In 
this study, the short-term patterns in wind speed data are 
captured by ANN and the long-term patterns are 
considered utilizing the MC approach and four 
neighbourhood indices.  The proposed model consists of 
two ANNs. The first one, ANN-1, is used for short-term 
wind speed prediction. ANN-1 is a multi-layered 
perceptron (MLP) that consists of one input layer, one 
hidden layer, and one output layer that has only one 
neuron. This step is called primary prediction by the 
author. This network has 10 inputs fed with actual wind 
speeds corresponding to times t to t-10. The training data 
consists of 30 sets with 10 measured wind speeds in each 
set. After the primary prediction, TPs (transition 
probabilities) for predicted values, other four indices and 
primary prediction outputs are fed as input variables to a 
second ANN (ANN-2). Finally, the constructed model is 
used for different time horizon predictions. Regarding the 
Markov process, the probability of the given condition in 
the given moment may be deduced from information 
about the previous conditions. The order of the chain 
gives the number of time steps in the past influencing the 
probability distribution of the present state, which can be 
greater than one. Many natural processes are considered 
as Markov processes. Actually, the TPM (transition 
probabilities matrix) is a tool for describing the MC 
activities. Each element of the matrix represents 
probability of moving from a specific condition to a next 
state. TPM is formed by 600 preceding wind speed data 
and the calculated matrix is used for primary predicted 
values. Initially they calculate the Markov state for 
primary predicted values, the outputs of ANN-1, for one 
step ahead. Then, according to TPM, the probability of 
predicted value in the next step is calculated. This process 
is executed for all primary predictions. For longer 
prediction horizon, transition probabilities for two or three 
steps ahead are necessary. In these cases, the above TPM 
is multiplied according to the number of time steps in the 
future. It is observed that there is a logical relation 
between the states for predicted values in comparison 
with the states of actual values. 

The relations between the primary prediction results 
and the coefficients obtained from MC are difficult to be 

established. Since ANNs can encode complex and non-
linear associations, the ANN-2 is used to discover the 
relations between the primary prediction values and the 
obtained probabilities. The inputs of the ANN-2 are: the 
transition probability of the predicted values’ state, 
transition probabilities toward two next states (FNIs) and 
transition probabilities toward two backward states 
(BNIs). The main purpose of ANN-2 is to achieve higher 
accuracy of prediction in contrast with primary predicted 
values. Since the ANN-2 has six input variables and one 
output variable, number of neurons in each layer should 
be in the range of variables. The best structure for the 
ANN-2 with the least MAPE (Mean absolute percentage 
error) is determined by the author as 3, 0 and 1 neurons 
for input, hidden and output layers, respectively, with 10 
training vectors and the learning rate of 0.01–0.05.   
 
2.4  The arbitrator 
 

 
Figure 2. The arbitrator 

 
The ensemble uses the output obtained from the 

individual constituents as inputs to it and the data is 
processed according to the design of the arbitrator. As the 
arbitrator in our approach we use the following RNN 
shown in (Fig. 2). 

The RNN has two context layers: the Elman context 
layer and the Jordan context layer, both with some 
differences from the original Elman and Jordan recurrent 
neural networks. The Elman context layer differs from the 
original Elman RNN because the two context neurons 
obtain inputs from the output of the hidden layer after a 
delay of one time unit. In Elman context layer the number 
of neurons must match the number of neurons in hidden 
layer. A Jordna RNN has a number of neuron in context 
layer that matches the number of neurons in output layer. 
Another difference is that in a Jordan network the output 
is used to feed the context layer through a non-weighted 
connection and the context layer is going to feed to the 
hidden layer just as in Elman networks.  
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3. PREDICTION RESULTS  
 

We tested the proposed EPS using data sets collected 
from the ANM (National Meteorology Administration) 
website. 

 

 
a) 

 
b) 

 
c) 

Figure 3. Prediction results a) a winter day b) a 
summer day c) a fallen day 

 
We randomly selected three days, one from each 

season, and predict the wind speed at each hour for these 
days. Our EPS results are illustrated in (Fig. 3). The solid 
line represents the measured wind speed and the dotted 
line indicates the predicted values. The wind speeds were 
measured in Tulcea and collected from the ANM web 
site. To predict W (d, h), the wind speed at hour h of day 
d, we train the RNN with only last two values: W (d-1, h), 
W (d-2, h); it has been reported that every data point in a 
time series is only strongly dependent on the immediate 
past two values. The training is complete when we 
provide as inputs all wind speed values, for a number of n 
epochs. One epoch is finished when the entire training set 
is exposed to the RNN. The number of epochs is the 
number of steps of the training process, it is a dynamic 
value; we set it high and let it stop according to the 
validation set. The initial learning rate is 0.001, results in 
good coarse training quickly. For better performance, we 

used a schedule of 0.0005 for two epochs, followed by 
0.0002 for the next three, 0.0001 for the next three, 
0.00005 for the next four, and 0.00001 thereafter. The 
learning rate is decreased by 79.4% of its value after 
every epoch. In order to implant fixed points into 
recurrent systems, the backpropagation technique is used. 
In fixed-point learning, the first action is the forward 
propagation of the activations. This procedure repeated 
for a certain number of times will induce the relaxation 
period. This has to be repeated until the network attains 
its own dynamic. After the net become stable, an error can 
be computed at the output. Then, the error is propagated 
backwards through the network. The error at each output 
can be multiplied by the relaxed activation for updating 
the weights. We have to select the relaxation time both in 
the forward and backpropagation phases. 

In (Fig. 4) is presented a comparison between the 
prediction accuracy of the ensemble subsystems and the 
EPS, at different time-horizons.  As we can see in the, we 
obtained very good prediction results proven by a very 
low average error rate. The secret is the joint usage of 
Neuro Solutions features and our innovative EPS 
architecture. 

The prediction error of a model is classically defined 
as the difference between the measured and the predicted 
value. A horizon dependent model error e (t + k|t) is 
given by: 

 
e (t + k|t) = v (t+k) – vp (t+k!t)  (4) 
 
Where v (t + k) is the measured wind speed at time t 

+ k, and  vp (t+k!t) is the wind speed predicted for time t 
+ k and computed at time t. The evaluation criterion we 
used is the MAPE defined as: 
 

MAPE (k) = 
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Also, k and N represent the prediction horizon and 

number of prediction respectively. In this study for each 
hour we have done 30 predictions, so N=30. 
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Figure 4. MAPE at different time-horizons for each ensemble subsystem 
 
 

Table 1. Best prediction errors and MAPE 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Hour 
 

Winter day 
22.01.2011 

Summer 
day 
22.06.2011 

Fallen day 
22.10.2011 

0 +0.01 / 1.35 -0.01/ 1.2 +0.01/ 1.12 
1 -0.23 / 11.5 +0.4 / 403 +0.4 /403 
2 -0.02 / 1.06 -0.13 / 13.13 +0.02 / 2.2 
3 +0.25 / 12.5 -0.003 / 0.35 +0.1 / 98 
4 +0.79 / 39.5 +0.17 / 167 +0.02 / 0.2 
5  -0.65 / 21.6 -0.35 / 305 +0.02 / 0.22 
6 -0.24 / 12 -0.15 / 147 +0.01 /1.55 
7 +0.06 / 2.96 -0.13 / 132 +0.1 / 107 
8 -0.02 / 0.66 +0.1 / 9.69 +0.2 / 203 
9 +0.34 / 17 -0.3 / 15 -0.01 / 0.55 
10 -0.19 / 6.33 +0.002 / 0.1 -0.01 /0.55 
11 +0.01 / 0.33 +0.3 / 31 +0.5 / 508 
12 +0.19 / 6.35 -0.32 / 11.28 -0.6 /22 
13 +0.12 / 4,04 +0.85 / 42.6 +0.7 / 36 
14 -0.02 / 0.77 +0.32 / 18 +0.4 / 19.9 
15 -0.01 / 0.33 -0.01 / 0.52 -0.1 / 5.6 
16 +0.13 / 4.43 +0.42 / 43 +0.65 /66 
17 +0.8 /28.65 -0.001 / 0.06 +0.18 /9 
18 +0.03 / 0.75 +0.62 / 32 +0.21 / 10.52 
19 -0.1 / 3.35 +0.79 / 80.5 +0.32 / 33 
20 -0.21 / 5.52 +0.001 / 0.05 -0.03 / 1.53 
21 +0.05 / 1.66 -0.23 / 23.2 +0.2 /20.1 
22 -0.21 / 7.22 +0.03 / 1.5 +0.16 / 8 
23 +0.01 / 0.39 +0.34 / 339 +0.21 /230 
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Table 2.  Average MAPE for each ensemble subsystem 
 

 
 
 
 
 
 
 
 
 
4.  CONCLUSIONS AND FUTURE WORK 
 

A repeatedly scenario appears when new prediction 
results are presented: the new model is argued to have 
higher predictive accuracy than do other prediction 
models. This situation shares the issue that predictive 
accuracies are being calculated and compared in different 
test sets. The prediction model may have inherent 
accuracy, but the accuracy as measured will vary across 
test sets. This makes it impossible to define the accuracy 
of a prediction model independent of the test set to which 
it is applied. Basically, no real-world prediction model 
can foresee perfectly. There are four major reasons for 
this.  
1. The prediction model may not have one or more 

required variables: we simply do not know 
everything necessary to predict with perfect accuracy.  

2. Measurement error can reduce accuracy: a poor data 
collection phase introduces noise in the data set and 
damage predictive accuracy.  

3. The prediction model may not fit as well as it could: 
a predictor might be forced to have a linear outcome 
when a nonlinear result would have fit the data better 
and would permit more precise predictions.  

4. The effective sample size may be unsatisfactory to 
approximate the prediction model coefficients as 
accurately as possible. 

 
Consequently, the new prediction models must be 
compared to existing models on the same data sets if we 
want to judge whether progress has been made or not. 
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Model Average MAPE  
Winter day 

Average MAPE  
Summer day 

Average MAPE   
Fallen day 

RQVM 8.73 76.18 74.57 
ANN-MTS 8.91 75.92 74.98 
ANN-MC 8.12 76.09 74.68 
EPS 7.92 75.64 74.46 
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