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Abstract - The paper is focusing on dynamic programming 

use for power system expansion planning (EP) – trans-

mission network (TNEP) and distribution network 

(DNEP). The EP problem has been approached from the 
retrospective and prospective point of view. To achieve 

this goal, the authors are developing two software-tools 

in Matlab environment. Two techniques have been 

tackled: particle swarm optimization (PSO) and genetic 

algorithms (GA). The case study refers to Test 25 buses 

test power system developed within the Power Systems 
Department. 
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1. INTRODUCTION 
 

The network expansion planning is discussed within 
this paper. This problem is discussed based on two approaches: 
static and dynamic manner. In the 1

st
 case the problem is 

tackled in a retrospective manner. In case of the dynamic 
problem, both retrospective and prospective manners have 
been tackled. A set of network expansion candidates is 
proposed for both approaches. The power flow is performed 
using conventional methods. The optimal power flow 
(OPF) is computed for the maximum expansion solution 
(including all the expansion scenarios) using particle 
swarm optimization (PSO) and genetic algorithms (GA). 

Having the optimal maximum expansion solution, the 
optimal expansion solution is computed also using PSO 
and GA. For all these purposes own software-tools have 
been developed in Matlab environment. They are able to 

be linked with other well-known computer aided power 
system analysis software, importing the power system 
database. Two types of GAs are used within this paper. 
Binary coded GA for the expansion planning stage and 

real coded GA for the OPF computing. 
The network expansion planning problem is able to be 

discussed for both distribution and transmission networks.  

A very simple dynamic programming based method 
in presented in [1]. Solutions are analysed only checking 
the network elements' loading level. Developed method 

allows the users to established quasi-optimal solutions, 
based on project experience. Stochastic dynamic program-

ming is recommended in [2], allowing flexible use of 
time moments when decisions are going to be take. Also, 
authors are proposing to combine the dynamic program-
ming with a heuristic and Bender technique. 

A hybrid method is proposed in [3], including an evo-

lutive meta-heuristic algorithm, a meta-heuristic searching 

method and discrete dynamic programming with finite 

horizon. The case study refers to a small scale test power 
system.  

It is highlighted that, within the literature, there is a 

reduced number of papers dealing with dynamic network 

expansion planning. The case studies are focusing on small 

scale test power systems.  

The use of a heuristic algorithm is proposed in [4] to 
solve the distribution network expansion planning. A non-
linear optimization problem is solved having as a goal to 
compute a sensitivity index. The nonlinear programing is 
obtained "relaxing" the binary integer variables – they 
are replaced with real variables within the [0, 1] range. 
The objective function includes the network expansion 
costs and also the ones corresponding to its operation 
(real power losses' costs). 

An evolutionary algorithm is proposed in [5] for 
medium voltage, urban, distribution network expansion. 
A real distribution network is used as cases study. The 
reconfiguration problem is also tackled from the real power 
losses minimization point of view. The constraint relations 
are referring to voltage level and network element loading 
level. The objective function refers to real power losses 
minimization and new network elements' costs. The authors 
are providing details regarding the settings for the proposed 
evolutionary algorithm: initial population, mutation, cross-
over and selection operators, objective function. 

An improved genetic algorithm is proposed in [6] to 

establish the electrical substations' optimal placement and 

distribution network expansion and reconfiguration.  
A differential evolutionary algorithm is presented in 

[7] for optimal distributed network expansion planning. 

In this case the global optimum is obtained applying a 
"fitness sharing" technique. The algorithm proves to be 
accurate, fast and robust.  

The use of linear programming technique has been 

proposed by Garver in [8] for transmission network ex-
pansion planning (TNEP) solving. The initial data being 
represented by: power system configuration, consumed 

power forecast and real power sources' evolution plan. The 
optimization problem is solved using linear programming 
techniques. Such an approach has the following drawbacks: 

a linear mathematical model is used for power flow com-
puting, reactive power flow is not tackled, real power losses 

are neglected, objective function (OBF) refers to the power 
system branch overloading cost minimization, etc. [9]. 

In [10] it is stipulated that the TNEP is a mixed non-
linear optimization problem, with real and integer variables. 
In [11] the real power losses are approximately considered. 
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Also, the OBF is extended referring to the total cost 

minimization formed by investment cost and generating 

units' operation cost. These type of problems are solved 

in [12] applying a meta-heuristic technique for exploring 

the solution space. In [13] an additional term is added to 

the OBF expression, taking into consideration aspects 
related to the power system safety operation. It is computed 

based on several N-1 criterion operating conditions. 

In [17] the TNEP is solved based on a dynamic discrete 

PSO problem. The PSO algorithm specific parameter nu-

merical values are discussed for an optimal method tuning 
(population size, maximum admissible velocity, convergence). 
The TNEP issue is defined in [12] as a mixed nonlinear 

optimization problem, implemented within a discrete PSO 

algorithm. The power flow is solved in d.c., small scale 

test power systems have been used. In [15] an adaptive PSO 

algorithm is considered for TNEP solving. It has been 

applied on IEEE 24 test power system. A discrete PSO 
evolutionary algorithm is discussed in [20]. 

Following the introduction already presented, the 2
nd

 

section refers to the programming. theoretical background. 

The mathematical model and software-tool are briefly 

described within the 3
rd

 section. The 4
th

 section refers to 

the case study and the results' discussion. Finally, the 
conclusions are synthesized. 

 
 

2. DYNAMIC PROGRAMMING. 

THEORETICAL BACKGROUND 
 
Dynamic programming represents an optimal solution 

selection methodology considering specific constraints, 
following a step-by-step decision process [18]-[21]. It 
has been developed by Bellman as a decision process 
optimization method. The word "programming" refers to 
"planning" not programming from the computer science 
point of view. The word "dynamic" refers to the intermediary 
solutions results tables corresponding to different stages 
from the decision process. 

Discrete dynamic programming with finite horizon is 

discussed within the current paper. In this case, decisions 

are taken at specific "time moments", following a finite 

number of computing steps. As an example, we are talking 
about the transmission network expansion for 20 years' 
time horizon, considering 5 years step. Year 0 represents 

the initial situation, then expansion solutions are searched 

for year 5, year 10, year 15 and year 20 – corresponding to 
the final state of the transmission network configuration. 

Let us consider a system having Y0 initial state charac-

terized by 1,0 2,0 ,0, ,..., my y y  values for the m state variables 

1 2, ,..., my y y . D1 decision is taken at t1 "time moment", 

corresponding the 1,1 2,1 ,1, ,..., px x x  values for the p decision 

variables. The new state y1 of the system described using 

values 1,1 2,1 ,1, ,..., my y y  of the state variables depends on 

the initial state and approved decision.  

 1 1 0 1( , )Y Y y D=  (1) 

Going further, at tj time moment Dj decision is taken 

corresponding 1, 2, ,, ,...,j j p jx x x  values of the decision 

variables. As a consequence the system is passing from 

the Yj-1 state (characterized by 1, 1 2, 1 , 1, ,...,j j m jy y y− − −  

values of the state variables) into Yj state (characterized by 

1, 2, ,, ,...,j j m jy y y  values of the state variables). 

Yj state depends on the previous state Yj-1 and Dj 
decision: 

 1( , )j j j jY Y Y D−=  (2) 

Finally, at n computing step, tn time moment, the system 

is going to be in yn state once the Dn decision is taken: 

 1( , )n n n nY Y Y D−=  (3) 

Based on relations (2) and (3) it yields that the final 
state of the system depends on the initial state and approved 
decisions: 

 0 1 2( , , ,..., )n n nY Y Y D D D=  (4) 

The taken decisions' set 1 2, ,..., nD D D  represents the 

decision policy or strategy. 
Decisions have to fulfil specific constraints at every 

moment: 

 , 1,2,...,j jD j n∈ ∆ =   (5) 

where ∆j represents the possible decisions' set at tj time 
moment. 

Also, the state variables are subjected to different 
constraints: 

 , 1, 2,...,j jY j n∈ ε =   (6) 

where εj represents the possible decisions' set at tj time 
moment.  

For the previously discussed model the system states 
are conducted in forward manner (from initial state, to 
the final one). This represents the prospective analysis. 
But, it could be also discussed the backward approach 
for the system state (from the last one, to the initial one). 
In this case we are talking about retrospective analysis. 

A partial objective function (OBF) jϕ  is considered 

for each computing step , 1, 2,...,j j n= . Its value depends 

on the Dj decision and yj system state (once the decision 
is taken): 

 ( , )j j j jD Yϕ = ϕ   (7) 

jϕ  function value characterizes from the OBF point 

of view, the Dj decisions and obtained yj system state. 
A global OBF corresponds to the entire strategy (including 

all the partial jϕ functions): 

    1 1 1 2 2 2( , ) ( , ) ... ( , )= ϕ + ϕ + + ϕn n nOBF D Y D Y D Y  (8) 

The strategy that maximizes or minimizes – depending 
on the desired objective – the OBF in relations (8) is 
searched. The minimization is the objective for the current 
paper. The strategy that leads to the OBF extreme value 

represents the optimal strategy * * *
1 2, ,..., nD D D . 

The dynamic optimization problem may be discussed 
as follows: starting from an initial Y0 state the optimal 

strategy * * *
1 2, ,..., nD D D  is requested to be established, 

leading the system to final state Yn, having as a goal to 
minimize the OBF: 

  
* * *

0 1 2
1

( , , ,..., ) ( , )

=

 
 = = ϕ
  
∑

j

n

n j j j
D j

OBF F Y D D D D YMin   (9) 

satisfying all the constraints. 
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Solving the optimization problem through exhaustive 

solution domain searching is very difficult and time con-

suming. High computing amount is obtained. The only 

feasible solution refers to the use of dynamic programming. 

It is based on R. Bellman's optimal principle: an optimal 

strategy is based on the fact that whatever the initial state 
of the system and previously adopted decisions would be, 

the remaining decisions have to be taken in such a way to 

compose an optimal strategy regarding the current state. 

Thus, the following recursive relation is obtained for 

the use of dynamic programming method: 

    1 ( , ) , 1,2,...,

j

j j j j j
D

F F D Y j nMin − = + ϕ ∈ =    (10) 

The partial objective function jϕ  includes the cost 

of passing from the 1jY −  state to the Yj state and also, the 

system operation in Yj state. 
The use of relation (10) drastically reduces the number 

of analysed solutions for optimal value searching, comparing 

with any other exhaustive or (quasi)heuristic searching 

method. 
 
 

3. DYNAMIC EXPANSION PLANNING 
MATHEMATICAL MODEL 

 

3.1. Problem statement 
 

The dynamic TNEP is discussed for the following 

time steps: 2014 year – initial stage, 2019, 2024, 2029 

years – intermediary stages and 2034 year – final stage. 
It is approached as:  

• prospective search (forward direction); 

• retrospective search (backward direction).  

Two issues have to be solved: 

• consumed power forecast correlating the power 

generation capacity; 

• admissible solution domain definition – it contains 

the network elements' list that are allowed to be part 

of the optimal solution corresponding to the final 

stage (2034 year). 

According to the prospective analysis, the starting 
point refers to the 2014 year. In the following, the expansion 

solutions are computed step-by-step for the successive 

years: 2019, 2024, 2029 and 2034. The provided results 

for 2034 year represent the final solution for the entire 
20 years analysed period. 

The admissible solutions' domain has been considered 

to be the maximum expansion one extracting the network 

elements already introduced for each expansion stage. 

A static expansion planning solving is applied for each 

intermediary stage. The nonlinear optimization problem 
is solved using evolutionary techniques: PSO and GA. 

According to the retrospective analysis, the starting 

point is represented by the maximum expansion solution, 

year 2034. In the following, the expansion solutions are 

computed step-by-step for the successive years: 2034, 

2029, 2024 and 2019. The results obtained for 2019 year 
represents the final solution. 

The comments provided at the prospective analysis 

for the admissible solution domain definition and static 

expansion solving at each intermediary stage are suitable 

for this case too. 

The use of both approaches (prospective and retrospec-

tive) offers the advantage of comparing the intermediary 

solutions (2019, 2024, 2029 years) and, especially, the final 

one (2034 year). 

Mathematical model for transmission network expan-

sion planning is presented. Two solving techniques from 
the artificial intelligence field have been tackled: particle 

swarm optimization (PSO) and genetic algorithms (GA). 

The optimization problem is a multi-criterial one. The 

following components are included within the objective 

function [21]: 

• investment equivalent yearly cost related to new 
power transmission capacities (overhead lines, 

autotransformers); 

• power system operating costs (OPF OBF value); 

• safety operation, quantified based on risk factor 

computing: 

• total available transmission capacity. 

The mathematical model for the dynamic optimal 

expansion planning is developed based on GA and PSO 

methodologies.  

 
3.2. PSO based approach 
 

The swarm 1 2{ , , , }np=S x x x…  contains a set of feasible 

solutions, formed by np particles. Each particle represents 

a possible solution for the network expansion problem. It 

is formed by d components corresponding to the candidate 
network elements status. These components are rounded 

real values ranging between [0, 1] (0 – disconnected, not 

included within the solution, 1 – connected, included 

within the solution). 

Particles' evaluation is performed based on OBF value. 

A valid solution is obtained once the OBF value is not able 
to be improved.  

The PSO based TNEP algorithm steps are described 

in detail in [22], [23]: 

a) particles are randomly; 

b) initial population is evaluated based on OBF value. The 

gbest position is established in case of each particle; 

c) for a particular t computing step 0,1,2,...t = , the particle 

velocities are computed; 

d) for the same t computing step, the velocities are adjusted 

according to the velocity limiting concepts and adaptive 

velocity;  

e) for the same t computing step, the new particle positions 

are computed; 
f) optimal operating condition is determined for each par-

ticle configuration, based on the PSO algorithm; 

g) for the same t computing step, the current population 

is evaluated based on OBF value. The pbest and gbest 

positions for each particle are determined; 

h) for the same t computing step, the stopping criterion is 

checked: the OBF value ( )OBF gbest  is not improving. 

Once this condition is satisfied the computing process is 

ending. The solution defined by the last gbest represents 

the optimal solution. Contrary, the algorithm continues 

with point b). 

In case of complex power systems (hundreds, thousands 
of buses) point f) of the algorithm leads to an increased 

computing time. Thus, the authors have developed and 

tested a simplified version of the algorithm. Its characteristics 

being the following ones: 
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• point f): OPF is replaced using power flow computing; 

• OPF is computed only for the gbest solution; 

• new population is generated as follows: 1
st
 particle 

is considered to be gbest and the following ones are 

randomly obtained; 

• this process is repeated until the gbest value is not 
improved; 

• new population is generated within the final step, 

having smaller np dimensions: gbest is considered to 

be the 1
st
 particle. The following ones are obtained 

by controlled updates related to gbest; 

• the process finishes once gbest is not improving. 

PSO based TNEP algorithm (modified as previously 

discussed) has been tested on small scale test power systems 

and even on complex ones. The optimal solutions have been 
obtained, but within considerable smaller computing time 

effort. 

 

3.3. GA based approach 
 

The 1 2{ , , , }= … ncP x x x  population represents a set of 

possible solutions. Each chromosome forming the popu-

lation contains binary digits (0 and 1), representing the 

state for the network expansion candidates. Thus, for this 
stage we are dealing with binary coded genetic algorithms. 

Each chromosome is evaluated based on the objective 

function. The computing process finishes, if the solution is 

not able to be improved for a specific number of computing 

steps. 

The algorithm stages are described in detail in [22], 
[23]: 

a) chromosomes forming the population are randomly 

initialized with 0 and 1 values; 

b) GA based OPF is computed for the configuration coded 

by each of the chromosomes; 
c) initial population is evaluated based on OBF value; 

d) for a specific t computing step (t = 0, 1, 2, ...) the chromo-

somes forming the population subjected to recombination 

are selected; 

e) chromosomes that are subjected to crossover are formed; 

f) offspring are formed; 
g) number of chromosome genes subjected to mutation is 

computed; 

h) 1
st
 chromosome belonging to the population obtained 

at previous step is replaced with the best of the old 

population; 

i) optimal power flow is computed for the configurations 
coded by each chromosome. Current population is 

evaluated based on OBF value; 

j) if the OBF value is not able to be improved, the computing 

process finishes. Contrary, computing step is increased 

with 1 and the algorithm is repeated starting with point c). 
 

3.4. Software-tool 
 

Two software-tools have been developed in Matlab 
environment based on PSO and GA approaches: PowerOpt 

PowerplanPSO and PowerOptPowerplanGA. Each one 

has two modules linked through a graphical user interface 

[23], [24]: 

• 1
st
 module – used for power system optimization. 

Also, it is able to be used as a stand-alone module; 

• 2
nd

 module – used for dynamic transmission network 

expansion planning. 

PowerOptPowerplanPSO's main window for the 

OPF module is presented in Fig. 1. Once the power system 

database has been loaded, the user is able to select the 

optimization type he desires by selecting the control vari-

ables. 7 optimization types are available: V – generating 

groups terminal voltage, P – real generated power, k – 

transformer ratio. The lower part of the main window 

(Fig. 1) allows the user to set the PSO parameters: maximum 

computing steps, capping iterations, error, swarm dimension. 

The main window for the software-tool 2
nd

 module 

(expansion planning module) is presented in Fig. 2. 

 

Fig. 1. PowerOptPowerplanPSO.  

OPF module main window 

 

Fig. 2. PowerOptPowerplanPSO –  

dynamic network expansion window 

The 2
nd

 developed software-tool based on GA is named 

PowerOptPowerplanGA. The provided comments and 

characteristics for the PSO approach are suitable for this 

case too. Also, screen captures and behaviour are very 

similar, with few differences specific to the GA mechanism 

(for details see [23], [24]). 
 

 

4. RESULTS AND DISCUSSIONS 
 

The case study refers to Test 25 buses test power 

system developed within the Power Systems Department. 

It has a number of 25 buses (6 PV buses, 19 PQ buses) and 

29 network elements (18 overhead lines – OHLs – 110 kV, 

220 kV, 400 kV, 11 autotransformers) (Fig. 3) [25]. 
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Fig. 3. Test 25 buses test power system – one line diagram 

 

Fig. 4. Maximum expansion solution one-line diagram 
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The dynamic transmission network expansion planning 

is performed (retrospective and prospective approach). 

This process is step-by-step discussed within the following 

subsections.  
 

4.1. Base case – year 2014 
 

Base case has been computed using conventional 

methods. Bus voltages are ranging between 0.95 and 

1.10 p.u. (meaning 104.5-121 kV, respectively 209-242 kV). 

PV buses terminal voltage limits are set between 0.95 and 

1.15 p.u. 

The total consumed power is Pc = 2509.0 MW, the 

real generated power Pg = 2536.9 MW and real power 

losses ∆P = 27.9 MW. 
 

4.2. Maximum expansion solution – year 2034 
 

The transmission network expansion planning is dis-

cussed for a 20 years, based on the last year consumed 

power forecast.  For this case the total consumed power 

is Pc = 5018.0 MW. The generation capacity has been 

extended. New generating units have been considered for 

the following buses: 26, 27, 28 and 29. 

The one-line diagram of the power system correspond-

ing to the maximum expansion solution is presented in 

Fig. 4. It has 29 buses (10 PV buses, 19 PQ buses) and 58 

network elements (36 overhead lines – 110 kV and 20 kV 

voltage levels, 22 (auto)transformers). 

29 new transmission network elements (18 OHLs – 

existing circuit has been doubled, 10 autotransformers 

and 1 transformer) have been introduced (considered as 

candidates within the expansion list). Thus, the expansion 

scenario is the following one: 

• 2
nd

 circuit for 110 kV OHL 5-21, 17-19, 17-20, 18-20, 

19-20, 21-22, 21-25, 23-24, 23-25; 

• 2
nd

 circuit for 220 kV OHL 9-12, 10-15, 11-12, 11-13, 

11-14, 13-14, 13-15, 15-16; 

• 2
nd

 circuit for 400 kV OHL 7-8; 

• 2
nd

 220 / 110 kV autotransformer 11-17, 12-18, 15-23, 

16-22; 

• 2
nd

 400 / 220 kV autotransformer 7-9, 8-10; 

• 2
nd

 400 / 24 kV transformer 1-7. 

Using the software-tool PowerOptPlanPSO the OPF 

has been computed for the maximum expansion solution. 

Real power losses are equal to ∆P = 40.38 MW, compared 

to 55.89 MW for the maximum expansion solution base 

case. Thus, 26 % decreasing has been recorded.  

The PSO algorithm evolution for OPF is given in Fig. 5. 

 
Fig. 5. PSO algorithm evolution for OPF computing 

The average OBF values for the entire swarm are 

represented using blue color. The notched shape of the 

graph highlights diversity within the population. The solution 

space is efficiently explored for the initial population 

generation. The algorithm convergence is highlighted 

by the graphical plot flattening, for the last computing 

steps. 

gBest OBF values are represented using light green 

color, representing the OPF solution. An accentuated 

decrease is recorded, during the first ten computing steps. 

gBest Lagrangean function values are represented using dark 

green color.  

The equivalent OBF and Lagrangean values highlight 

the absence of constraint relations' violations. 

 

4.3. Optimal expansion solution 
 

◊◊◊◊ Retrospective approach 

Before the dynamic transmission network expansion 

planning the load forecast for 20 years period (2014-2034) 

has been performed. The results are presented in Table 1. 

Table 1. Consumed Power Forecasting 

  Pc total [MW]  Qc total [Mvar] 

 2014  2509.0  945.0 

 2019  2983.7  1123.8 

 2024  3548.3  1336.4 

 2029  4219.6  1589.3 

 2034  5018.0  1890.0 

The starting point is represented by the maximum 

expansion solution, year 2034 and the expansion solutions 

for all the stages: 2034, 2029, 2024 and 2019. The result 

for 2034 year represents the final solution of the problem 

(for the entire 20 years planning horizon). 

The solution admissible domain for each expansion 

stage has been defined based on the previous results. 

The following elements have been resulted within the 

optimal expansion solution: 

• 2
nd

 circuit for 110 kV OHL 5-21, 17-20, 21-22, 23-24; 

• 2
nd

 circuit for 220 kV OHL 10-15, 11-14; 

• 2
nd

 220 / 110 kV autotransformer 11-17, 12-18, 15-23, 

16-22; 

• 2
nd

 400 / 220 kV autotransformer 7-9, 8-10; 

• 2
nd

 400 / 24 kV transformer 1-7. 

The optimal expansion solution  (Fig. 6) is character-

ized by 29 buses (10 PV buses, 19 PQ buses) and 42 network 

elements (24 overhead lines, 18 (auto)transformers).  

The relative OBF value (Fig. 7) has been computed 

being the ration between the expansion solution OBF and 

the one corresponding to the maximum expansion solution. 

It is highlighted that, practically, the solution is found at 

the 2
nd

 computing step. It is explained due to the power 

system reduced scale and number of transmission network 

expansion candidates. 

The dynamic retrospective TNEP results are synthe-

sized in Table 2. 

Final solution for 2034 year has been obtained based 

on the several quasi-optimal solutions (with close OBF 

values). 
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Fig. 6. Optimal expansion solution one-line diagram

 

 

 

Fig. 7. OBF evolution 

Table 2. Retrospective Analysis Results 

 
2019 2024 2029 2034 

3 from 26 6 from 26 9 from 26 14 from 26 

OHL 

and 

ATR 

– – 110 kV 5-21 110 kV 5-21 

– – – 110 kV 17-20 

– – – 110 kV 21-22 

kV 23-24 110 kV 23-24 110 kV 23-24 110 kV 23-24 

220 kV 10-15 220 kV 10-15 220 kV 10-15 220 kV 10-15 

– – 220 kV 11-14 220 kV 11-14 

– – 220 kV 11-14 
ATR 220/110 kV 

11-17 

– 
ATR 220/110 kV 

12-18 

ATR 220/110 kV 

12-18 

ATR 220/110 kV 

12-18 

– 
ATR 220/110 kV 

15-23 

ATR 220/110 kV 

15-23 

ATR 220/110 kV 

15-23 

– – – 
ATR 220/110 kV 

16-22 

ATR 400/220 kV 

7-9 

ATR 400/220 kV 

7-9 

ATR 400/220 kV 

7-9 

ATR 400/220 kV 

7-9 

ATR 400/220 kV 

8-10 

ATR 400/220 kV 

8-10 

ATR 400/220 kV 

8-10 

ATR 400/220 kV 

8-10 

– TR 24/400 kV 1-7 TR 24/400 kV 1-7 TR 24/400 kV 1-7 

◊◊◊◊ Prospective approach 

The starting point is represented by the initial situation 

corresponding to the 2014 year. Expansion solutions for 

each future stage are computed step-by-step (2019, 2024, 

2029, 2034 years). Results for 2034 year are representing 

the final solutions for the 20 years' analysed period. 

The admissible solutions' domain has been considered 

to be the one defined by the maximum expansion solution, 

excluding the network elements already introduced at each 

stage of the prospective dynamic expansion. 

The dynamic prospective TNEP results are synthe-

sized in Table 3. 

Table 3. Prospective Analysis Results 

 
2019 2024 2029 2034 

3 from 26 6 from 26 9 from 26 14 from 26 

OHL 

and 

TR 

– – 110 kV 5-21 110 kV 5-21 

– – – 110 kV 21-22 

110 kV 23-24 110 kV 23-24 110 kV 23-24 110 kV 23-24 

220 kV 10-15 220 kV 10-15 220 kV 10-15 220 kV 10-15 

– – – 220 kV 11-12 

– – 220 kV 11-14 220 kV 11-14 

– – 220 kV 11-14 
ATR 220/110 kV 

11-17 

– 
ATR 220/110 kV 

12-18 

ATR 220/110 kV 

12-18 

ATR 220/110 kV 

12-18 

– 
ATR 220/110 kV 

15-23 

ATR 220/110 kV 

15-23 

ATR 220/110 kV 

15-23 

– – – 
ATR 220/110 kV 

16-22 

ATR 400/220 kV 

7-9 

ATR 400/220 kV 

7-9 

ATR 400/220 kV 

7-9 

ATR 400/220 kV 

7-9 

– 
ATR 400/220 kV 

8-10 

ATR 400/220 kV 

8-10 

ATR 400/220 kV 

8-10 

– TR 24/400 kV 1-7 TR 24/400 kV 1-7 TR 24/400 kV 1-7 
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4.4. Discussions 
 

Comparing the results gathered from both approaches 

the following conclusions are highlighted: 

• very similar solutions have been provided based on 

the two dynamic programming approaches. One single 

difference is highlighted: 2
nd

 circuit for 110 kV OHL 

17-20 (retrospective approach) is replaced with the 

2
nd

 110 kV OHL circuit 11-12; 

• solutions provided for 2024 and 2029 years are identical; 

• 2019 year solution is different – 400 / 200 kV ATR 

8-10 is missing within the prospective approach. It 

appears only in 2014 year. 
 

 

5. CONCLUSION 
 

The developed software-tools are able to be used in 

case of large scale, complex transmission networks. They 

behave as hybrid software-tool, the PSO and GA techniques 

being used for the OPF and network expansion stages.  

For both prospective and retrospective approaches the 

software-tools are able to provide quasi-optimal solutions.  

Slight differences are able to appear between the 

results provided by prospective and retrospective analyses. 

They may occur once the 1
st
 computing step (or the last 

one) is finished or even at intermediary results (stages).  

The initial solution (one the 1
st
) for the prospective 

approach may be more or less different to the one provided 

by the retrospective approach. 
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