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Abstract - This paper presents an optimization 
algorithm called Democratic Particle Swarm 
Optimization (DPSO), aiming to solve the economic 
dispatch problem. The DPSO algorithm is applied in 
the original version and also in a new version in which 
it is endowed with the chaotic Sine map (DPSO-Sine 
algorithm). The performance of DPSO and DPSO-
Sine algorithms is tested on two systems having 13, 
and respectively 40 generating units. The results 
show that DPSO and DPSO-Sine have better 
performances than PSO algorithm and few other 
optimization techniques used to solve the economic 
dispatch problem. 
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1. INTRODUCTION 
 

The economic dispatch (EcD) is a problem that 
concerns the specialists in the field and represents a topic 
of interest in optimizing the power systems. The EcD 
problem involves the determination of the generating 
units powers from a given power system, so that the fuel 
cost of whole system to be minimal, under the conditions 
in which the required restrictions given to the generating 
units and the system are met. The solving of the EcD 
problem is an approach to reduce the costs (by optimal 
scheduling of operating the whole generating units’ 
assembly of the system) without making investments in 
new capacities of electricity production. A key part of 
the optimization model for EcD problem is the input-
output characteristic (or the cost-power characteristic) of 
generating units. This characteristic was modeled by 
polynomial functions of 1, 2 or 3 degree or polynomial 
functions to which a sinusoidal term is added (as taking 
into account the valve-point loading effect). The 
consideration of the valve-point loading effect determines 
that the form of cost-power characteristics to be non-
convex, non-smooth, generating local minimums in 
multiple solutions area. Thus, the mathematical model of 
EcD problem is nonlinear and requires the use of 
adequate solving techniques. 

Meanwhile, the EcD problem was mainly solved 
using traditional methods or methods based on artificial 
intelligence. The classical methods (linear programming 
[1], nonlinear programming [2, 3]) have a number of 
shortcomings related to the differentiability of the 
functions involved in model, the type of objective 

function (convex/non-convex) and the type of constraints 
(linear/nonlinear). The methods based on artificial 
intelligence are not sensitive to the form of the objective 
function or constraints. Furthermore, the results show 
that these methods have been successfully applied for the 
optimization of technical systems [4, 5, 6, 7]. Some of 
the methods based on artificial intelligence applied to 
EcD problem solving are: Evolutionary programming 
(EP) [8], Genetic algorithm (GA) [9], simulated 
annealing (SA) [10], Particle Swarm Optimization (PSO) 
[4, 11], Differential Evolution (DE) [12, 13], Harmony 
Search (HS) [5], Ant Colony Optimization (ACO) [14], 
Civilized Swarm Optimization (CSO) [15], Artificial Bee 
Colony (ABC) [16, 17, 18], Bacterial Foraging 
Optimization (BFO) [6], Biogeography-based 
optimization (BBO) [19, 20], Quick group search (QGS) 
[7], Cuckoo Search algorithm (CSA) [21], Teaching 
learning based optimization (TLBO) [22]. 
One of the commonly used algorithms for solving the 
EcD problem is the PSO algorithm. This algorithm was 
applied in the original form [4, 15, 23], in various 
modified versions [24, 25] or by hybridization with other 
algorithms [9, 26, 27, 28, 29]. A recent version of PSO is 
the Democratic PSO algorithm, which was applied for 
structural optimization with frequency constraints [30]. 
In [30] there is shown that the Democratic PSO algorithm 
gains better results than the original PSO or other 
algorithms (such as genetic algorithm, charged system 
search algorithm). In this paper the Democratic PSO 
algorithm in its original form and endowed with a chaotic 
map (Sine map) is used for solving EcD problem. 

The main contributions brought in this paper are: (i) 
the use and implementation of Democratic PSO 
algorithm for solving EcD problem; (ii) the investigation 
of the Democratic PSO algorithm behavior in case of 
introducing certain chaotic components (generated by 
chaotic Sine map) in update relation of the solutions. 

The performances of Democratic PSO algorithm are 
tested on two systems with different characteristics and 
compared with other techniques/optimizing algorithms in 
terms of the solutions quality. Also, the Democratic PSO 
algorithm in its original form (using few statistic items) 
is compared with Democratic PSO algorithm endowed 
with Sine chaotic map. 
 
 

2. FORMULATION OF THE EcD PROBLEM 
 

The EcD problem follows up the determination of 
powers generated by the thermal units of a system such 
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as the total cost of fuel to be minimal in terms of 
fulfilling certain required constraints. We consider a 
power system having n generating units. The generated 
powers (Pj, j=1,2,..,n) by each unit represents the 
problem variables and are represented by [P] vector in 
the form of [P]=[P1,P2,..Pj,..,Pn]. The F[P] objective 
function is defined as following [8]: 
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where, F[P] is the fuel cost at whole system level; Fj(Pj) 
is the fuel cost, in $/h, for the i-th unit. 
Traditionally, the fuel cost per i unit is modeled by the 
relation (2) [8, 26]: 
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where Pj is the real power of the jth generator; Pj,min is the 
minimum real power of the jth unit; aj, bj and cj are the 
fuel cost coefficients of unit j, and ej and fj are the 
coefficients of unit j in respect of the valve-point effect; 
The Fj(Pj) cost, defined by (2) relation, is modeled through a 
2-nd degree polynomial function to which is added a 
sinusoidal term as considering the valve-point effect. 

The constraining relations imposed to the 
optimizing model are listed below [23]: 
i) The generating unit operates within the minimum and 
maximum generating capacity. These restrictions are 
linear, of inequality and expressed as follows: 
 
 Pj,min ≤ Pj ≤ Pj,max, j=1,2,…,n         (3) 
 
where Pj,min and Pj,max  are the minimum and maximum 
limits of j unit power. 
ii) The generating units may have certain restricted 
operating areas in order to avoid the vibrations. These 
restricted areas are called prohibition zones and their 
consideration imposes the below restrictions: 
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where NZj represents the number of prohibition zones for 

j unit. m
zpjP ,  and M

zpjP , are the minimum and maximum 

limits of zp prohibition zone for j unit. 
iii) In order to ensure the real power balance only one 
restriction of equality at the entire system is used. This 
restriction shows that the power generated in the system 
is equal to the demanded power plus the power losses. 
The power balance constraint is defined by the equation: 
 
 PGen - PLoss - PDemand = 0        (5) 
 
where, PDemand is the power demand of the system, in MW; 
PL represents the total losses in the system, in MW; PGen is 
the total generated power in the system by the n units. 

The total power losses can be calculated using the 
constant B coefficient formula [23]:  
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where Bij is an element of the loss coefficient matrix of 
size nxn, B0i is i element of the loss coefficient vector of 
size n and B00 is the loss coefficient constant. 
 
 

3. THE DEMOCRATIC PSO (DPSO) 
ALGORITHM 
 

The Democratic PSO algorithm is another variant of 
the PSO algorithm, which was recently developed by 
Kaveh and Zolghadr [30] to strengthen the PSO 
exploration ability. The DPSO algorithm has basically 
the same implementing steps as PSO algorithm, but the 
update equation of solutions is modified by adding an 
supplementary term. This term reflects the "democratic" 
effect of particles swarm upon the movement (in 
solutions space) of a certain i particle. DPSO algorithm is 
based on a population of particles or individuals (called 
swarm) that cooperate among themselves to obtain the 
optimal solution. A particle is a solution to the problem, 
and its quality is assessed through F objective function. 
We consider an n-dimensional searching space and a N 
particles population. A particle i is represented by two 
elements: the i particle position in n-dimensional space as 
represented by [Xi]=[x1i, x2i,…,xji,…xni], i=1,2,…,N and 
the velocity of the particle represented by [Vi]=[v1i, 
v2i,…,vji,…vni], i=1,2,…,N vector. In DPSO algorithm, 
the i particle movement from a [Xi(k)] position  
(corresponding to k iteration) to a different [Xi(k+1)] 
position (corresponding to k+1 iteration) involves the 
[Xi(k)] and [Vi(k)] vectors updating using the equations: 
 
 xij(k+1)=xij(k)+vij(k+1)        (7) 
 
 

vij(k+1)=ω·vij(k)+c1·r1(PLocalij(k)-xij(k))+  
 

c2·r2(PGlobalj(k)-xij(k))+c3·r3·dij(k)         (8) 
 
where, xij(k) and xij(k+1) represent the j component 
position of i particle for k iteration, k+1 respectively; 
vij(k) and vij(k+1) represents the j component velocity of i 
particle for k iteration, k+1 respectively; PLocali(k) is the 
best solution of the i particle founded until k iteration 
(PLocalij(k) is the jth component of PLocali(k) solution); 
PGlobal(k) is the best solution gained by swarm until k 
iteration; PGlobalj(k) is j component of PGlobal(k) 

solution; ω is inertia weight factor.  

A way of calculating it is ω=ωmax-(ωmax-ωmin)k/kmax.  

where, ωmin and ωmax are the minimum and maximum 

values of ω factor; kmax is the maximum number of 
iterations ; k is the current number of iterations. 
c1, c2 are cognitive and social acceleration coefficients; c3 
is a factor used in order to control the dij(k) “democratic” 
component from relation (8); r1, r2, r3 are numbers 
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uniformly distributed in (0,1) range; dij(k) is j component 
of Di(k) democratic vector of i particle.  

The Di(k) vector reflects “the democratic effect” of 
the particles from swarm upon i particle and is calculated 
by relation (9) [30]: 
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where, Xp(k), Xi(k) are the associated solutions to p and i 
particles, at k iteration; FBest, FWorst represent the best 
value, respectively the worst value of F objective 
function (obtained till k iteration); Fp, Fi are the values of 
objective function adequate to p and i solutions; Qip is a 
proportionality factor determined by relation (10); E is a 
binary parameter which is calculated using relation (11). 

The values of i particle (Vi, i=1,2,..N) for j unit are 
comprised between the (vj,min) minimum and (vj,max) 
maximum limits, which can be assessed by the relations: 

vj,max=(Pj,max-Pj,min)·β and vj,min=-vji,max, j=1,2,…,n. β factor 
was considered between 0.1 and 0.25. 

The relation (8) shows that the PSO Democratic 
algorithm contains an additional (c3·r3·dij(k)) term to PSO 
algorithm. The introduction of this term can improve the 
PSO algorithm performance in two ways [30]: 
(i) the particles in the swarm can receive additional 
information about the regions with potential in the search 
space of solutions; 
(ii) a few of the low performant particles are allowed to 
influence the movement of the swarm in order to 
improve the exploring capacities of the algorithm. 
 
 

4. IMPLEMENTING THE DPSO 
ALGORITHM FOR THE EcD PROBLEM 
 

The structure of each i particle is represented by a n 
dimensional [Pi]=[P1i, P2i,…,Pji,…,Pni] vector, its 
components being the real powers of the generating 
units. The application of PSO algorithm involves the 
following steps: 
Step 1. The introducing the input data of the problem and 
the setting of parameters for DPSO algorithm; 
Step 2. The initializing of population: 
2.1 The initializing of k iterations counter (k=0); 
2.2 The initializing of the population by random setting 
of the initial position and velocity of swarm particles: 
 
Pji(0)=Pj,min+rnd(1)(Pj,max-Pj,min), i=1,2,..N, j=1,2,,n     (12) 
 
vji(0)=vj,min+rnd(1)(vj,max-vj,min), i=1,2,..N, j=1,2,…,n    (13) 
 
where, Pj,min, Pj,max are the minimum and maximum limits 
of j unit; vj,min, vj,max are the minimum and maximum limits 

of velocity for j unit; Pji(0) and vji(0) are the values of 
powers and velocity for i particles and j unit, at k=0 
iteration; rnd(1) is a number uniformly distributed in (0,1) 
range; 
2.3 The evaluation of Fi(0)=F[Xi(0)] objective function for 
each initial solution Xi(0), i=1,2,..N; 
2.4 The identification of the best PLocali(0), i=1,2,..N 
particle and the best PGlobal(0) global particle, at k=0 
iteration; 
Step 3. The update of velocity and particles position.  
3.1 The determination of velocity and of the particles 
position is realized at each k iteration using (7) and (8) 
relations; 
3.2 Verifies if the velocity and the particles position is 
between the minimum and maximum limits. Verifies if 
each generating unit satisfies (3)-(5) restrictions; 
Step 4. Updates the PLocali(k+1) and PGlobal(k+1) 
vectors if the value of objective functions was improved in 
relation to the previous iteration; 
Step 5. Stopping process. If k<kmax, then k=k+1 and go to 
step 3; Otherwise go to step 6; 
Step 6: Print the Xbest best solution and the adequate value 
of Fbest=F(Xbest) objective function. 
 
 

5. CHAOTIC DPSO ALGORITHM 
 

The DPSO algorithm shown in section 4 utilizes 
random numbers of r1, r2, r3 to determine the velocity vij(k) 
from equation (8).  In this section is inserted chaos in 
updating equation (8) of the velocity (vij(k)). Thus, random 
numbers r1, r2, r3 from equation (8) are replaced with 
chaotic sequences (cr1, cr2 and cr3) generated by Sine 
chaotic map [31]. The chaotic sequences generated by Sine 
map is based on recurrence equations: 
 

cr1(h+1)=(a/4)·sin(π·cr1(h)), 
 

cr2(h+1)=(a/4)·sin(π·cr2(h)),       (14) 
 

cr3(h+1)=(a/4)·sin(π·cr3(h)), h=1,2,3,… 
 

The a parameter varies in (0,4] interval and the 
chaotic sequences (cr1(h), cr2(h) and cr3(h), h=1,2,3,…) varies 
in (0,1) interval. In this paper was chosen for the parameter 
a the standard value of (a=4). In scientific literature it 
shows that introductions of chaotic maps in metaheuristic 
algorithms may lead to its performance improvement [31, 
32, 33]. In this paper, insertion of the chaotic sequences 
in DPSO algorithm aims the same purpose (performance 
enhancement of DPSO algorithm). We note that 
algorithm resulted by insertion of the chaotic sequences 
in the DPSO algorithm will be called DPSO-Sine. The 
steps for implementation of DPSO-Sine algorithm are 
similar to the ones presented in section 4. 
 
 

6. CASE STUDIES 
 

The DPSO and DPSO-Sine algorithms have been 
applied to analyze two systems consisting of 13, 
respectively 40 generating units. The first system is 
studied in two cases (considering for demanded power 
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the values consecrated in scientific literature: 
PDemand=1800 MW and PDemand=2520 MW) and for the 
second system, a single case is considered (the demanded 
power being PDemand=10500 MW). For each case were 
made 100 independent trials and were calculated the 
following statistics items: best total fuel cost F (B), 
average total fuel cost F (A), worst total fuel cost F (W) 
and standard deviation (SD). 

The (N, kmax) parameters of DPSO and DPSO-Sine 
algorithms were selected by conducting several 
experimental tests for each case studied and for the (c1, 
c2, c3) parameters were utilized the recommended values 
from [30]: c1=2, c2=2 and c3=4. The DPSO and DPSO-
Sine algorithms were implemented in Mathcad, utilizing 
a PC with Intel i5 processor having the following 
characteristics: 2.2 GHz CPU and 4 GB of RAM. 
 
 
6.1 Test system 1 (with 13 units) 
 

The first two case study (C1 and C2) analyzes a 
system having 13 generating units with valve point 
loading. The C1 case study utilize a demanded power of 
PDemand=1800MW and the second one (C2), a demanded 
power of PDemand=2520 MW. We mention that both values 
of the demanded power are frequently used in comparison 
of different algorithms for EcD problem solving. The input 
data related to cost coefficients of the generating units and 
power operating limits are taken from [8]. 

For the C1 (1800 MW) and C2 (2520 MW) cases, 
the best solutions obtained by applying of the DPSO and 
DPSO-Sine algorithms are showed in Table 1. Also, 
statistics items B, A, W and SD resulted by utilizing the 
DPSO and DPSO-Sine algorithms are presented in Table 
2 (for C2 case) and Table 3 (for C3 case). Table 2 and 
Table 3 shows the obtained results, for the 13 unit system 
(C2 and C3 cases), by a variety of optimization 
techniques, such as: PSO [26, 28], PSO varieties [4, 13, 
24, 27, 28, 29], PSO hybrids [11, 26, 27, 29, 34, 38] and 
other techniques (HS [5], BFO [6], GA [9], SA [10], 
ACO [14], ABC [17]). 
 
Analyzing the results from Table 2 and Table 3 we can 
observe the following:  
 
(i) for C1 and C2 cases the DPSO and DPSO-Sine 
algorithms obtains better qualities solutions than the 
algorithms mentioned in Table 2 and Table 3;  
 
(ii) The DPSO-Sine is more performant (considering the 
B, A, W items) than PSO algorithm [9, 26, 28], than the 
algorithms derived from PSO (NewPSO [4], DPSO [13], 
IPSO [24], CPSO [27], CLPSO [29], NPSO [35]), then 
the hybrid PSO (PSO-SQP [26], CPSO-SQP [27], SQP-
CLPSO [29], FCASO-SQP [34]), or than the other 
optimization techniques (HS [5], BFO [6], IFEP [8], 
NDS [10], ACO [14], MABC [17], TLBO [22], CASO 
[34]); 
 
(iii) the DPSO-Sine algorithm is more performant than 
DPSO considering the B, A, W, and SD items. This 
shows that chaotic map Sine enhances the performance 
of the original DPSO algorithm. 

 
Table 1 The best solutions obtained through DPSO 
and DPSO-Sine algorithms for 13-units, cases C1 
(PDemand=1800 MW) and C2 (PDemand=2520 MW) 

Algorithm
Output 

DPSO 
(C1: 1800 MW) 

DPSO-Sine 
 (C1: 1800 MW) 

DPSO 
(C2: 2520 MW) 

DPSO-Sine 
 (C2: 2520 MW) 

P1 (MW) 628.31858 628.31826 628.30838 628.31731 

P2 (MW) 149.42636 223.86847 299.17433 299.18466 

P3 (MW) 223.08707 148.98806 299.19167 299.19001 

P4 (MW) 60.00000 60.00000 159.72715 159.72896 

P5 (MW) 109.84407 109.42881 159.73204 159.73119 

P6 (MW) 109.85780 109.83620 159.66598 159.71873 

P7 (MW) 109.82246 109.83059 159.72789 159.73234 

P8 (MW) 109.74806 109.86588 159.72585 159.73118 

P9 (MW) 109.89559 109.86372 159.72820 159.72754 

P10 (MW) 40.00000 40.00000 77.36594 77.39745 

P11 (MW) 40.00000 40.00000 77.37821 77.39769 

P12 (MW) 55.00000 55.00000 87.90567 92.39801 

P13 (MW) 55.00000 55.00000 92.36869 87.74492 

B ($/h) 17964.555 17964.372 24170.232 24170.015 

 
Table 2 Comparison between DPSO and DPSO-Sine 

algorithms and other optimization techniques  
(the case C1: 13-units, PDemand=1800 MW) 

Algorithms/ 
Items 

B ($/h) A ($/h) W ($/h) SD ($/h) 

NewPSO [4] 18120.594 18227.052 18427.631 - 

PSO [28] 18030.72 18205.9247 18401.35 - 

PSO [26] 18030.72 18205.78 - - 

IPSO [24] 17998.44 18176.95 - - 

IFEP [8] 17994.07 18127.06 18267.42 - 

EP-SQP [26] 17991.03 18106.93 - - 

NDS [10] 17976.9512 17976.9512 17976.9512 0.0000 

DPSO [13] 17976.31 18084.99 18310.43 - 

SA [10] - 18299.2550 - 123.8335 

NPSO[35] 17976.015 - - - 

HDE [12] 17975.73 18134.80 - - 

BFO [6] 17974.48 17997.12 18018.75 - 

SQP-CLPSO [29] 17973.12 18005.05 18069.35 23.81023 

CLPSO [29] 17970.67 18019.41 18071.57 22.67055 

PSO-SQP [26] 17969.93 18029.99 - - 

CASO [34] 17965.15 18022.04 - - 

DPSO 17964.555 17975.687 17995.552 5.727 

DPSO-Sine 17964.372 17973.049 17978.919 2.571 

 
Table 3 Comparison between DPSO and DPSO-Sine 

algorithms and other optimization techniques 
(the case C2: 13-units, PDemand =2520 MW) 

Items
Algorithms 

B ($/h) A ($/h) W ($/h) SD ($/h) 

EP-SQP [26] 24266.44 - - - 

PSO [28] 24262.73 24271.9231 24277.81 - 

PSO-SQP [26] 24261.05 - - - 

CASO [34] 24212.93 - - - 

CPSO [27] 24211.56 - - - 

MABC [17] 24208.8330 - - - 

HS [5] 24208.7 24323.2 24503.7 - 

TLBO [22] 24197 - - - 

CPSO-SQP [27] 24190.97 - - - 

FCASO-SQP [34] 24190.63 - - - 

ACO [14] 24174.39 24211.09 24243.90 21.10 

SA-PSO [11] 24171.395 - - - 

GA–DE–PS [38] 24171.3467 - - - 

TSA [9] 24171.211 24184.055 24392.203 41 

GA [9] 24170.804 24188.394 24567.974 59.53 

DPSO 24170.232 24173.968 24178.347 2.027 

DPSO-Sine 24170.015 24172.885 24176.515 1.994 

“-”data not available 

 
The calculus times obtained by DPSO and DPSO-

Sine algorithms have closed values, being approximately 
equals to 17 s. 
 
6.2 Test system 2 (with 40 units) 

The C3 case study analyses a system with large sizes, 
having 40 generator units and its demanded power is 
PDemand=10500 MW. The calculus data for this system are 
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given in [8]. The best solutions obtained by the DPSO 
and DPSO-Sine algorithms are presented in Table 4. In 
Table 5 is made a comparison between the DPSO, 
respectively DPSO-Sine algorithms and other 
optimization techniques presented in literature.  
 
Table 4 The best solutions obtained through DPSO and 
DPSO-Sine algorithms for 40-units, case C3 (10500MW) 

Output (MW) DPSO DPSO-Sine 

P1 110.85132 110.82092 

P2 110.83000 110.84145 

P3 97.39919 97.40097 

P4 179.74177 179.79721 

P5 88.10939 96.19795 

P6 139.99627 140.00000 

P7 259.63279 259.63430 

P8 284.63455 284.82380 

P9 284.64857 284.63962 

P10 130.00000 130.00000 

P11 168.80553 168.79623 

P12 94.00000 94.00000 

P13 214.76362 214.76721 

P14 394.28005 394.28113 

P15 394.28152 304.52193 

P16 304.53204 394.27870 

P17 489.27858 489.28249 

P18 489.31819 489.31098 

P19 511.27943 511.30607 

P20 511.28544 511.27842 

P21 523.27943 523.27701 

P22 523.28939 523.32843 

P23 523.30836 523.28013 

P24 523.28214 523.27644 

P25 523.28419 523.27811 

P26 523.29463 523.29853 

P27 10.00000 10.00000 

P28 10.00000 10.00000 

P29 10.00000 10.00000 

P30 95.97791 88.06416 

P31 190.00000 190.00000 

P32 190.00000 190.00000 

P33 190.00000 190.00000 

P34 165.32995 164.93686 

P35 200.00000 200.00000 

P36 200.00000 200.00000 

P37 110.00000 110.00000 

P38 110.00000 110.00000 

P39 110.00000 110.00000 

P40 511.28577 511.28093 

B ($/h) 121424.1275 121424.0947 

 
Analyzing the results from Table 5 we can find that:  

(i) the DPSO and DPSO-Sine algorithms are superior 
(considering B, A, W and SD items) to other 
optimization techniques utilized for solving the EcD 
problem (exception is the DE algorithm [36]);  
(ii) the DPSO and DPSO-Sine algorithms are more 
performant than PSO algorithm [14, 15, 26], than diverse 
PSO varieties (QPSO [25], CPSO-SQP [27], FCASO-
SQP [34]) and than other optimization techniques 
presented in Table 5 (ACO [14], GA [14], CSO [15], 
ABC [18], BBO [19], EP [26], DE [37],);  
(iii) the DPSO-Sine algorithm is more performant than 
the DPSO algorithm in relation with B, A and W items.  

The calculus times obtained by DPSO and DPSO-
Sine algorithms have closed values, being approximately 
equals to 123 s. 
 

Table 5 Comparison between DPSO and DPSO-Sine 
algorithms and other optimization techniques 

(the C3case: 40-units, PDemand=10500 MW) 
Algorithm/ 
Items 

B ($/h) A ($/h) W ($/h) SD ($/h) 

GSO [7] 124265.3984 124609.1799 125204.4753 - 

PSO [26] 123930.45 124154.49 - - 

EP [26] 122624.35 123382.00 - - 

Table 5 - continous 
PSO [15] 122588.5093 123544.8853 124733.6795 - 

GA [14] 121996.40 122919.77 123807.97 320.31 

MILP [39] 121986 - - - 

DE [37] 121840 - - - 

PSO [14] 121800.13 121899.57 122000.80 84.21 

ST-HDE [12] 121698.51 122304.30 - - 

CTLBO [40] 121553.83 121790.23 122116.18 150 

ACO [14] 121532.41 121606.45 121679.64 45.58 

SAHS [41] 121516.94 121694.49 121900.42 113.75 

ABC [42] 121515.1 124827.34 - - 

ABC [18] 121479.6467 121984.24 122137.42 - 

BBO [19] 121479.5029 121512.0576 121688.6634 - 

CSO [15] 121461.6707 121936.1926 122844.5391 - 

CPSO-SQP [27] 121458.54 122028.16 - - 

FCASO-SQP [34] 121456.98 122026.21 - - 

DE [36] 121442.2682 121448.8196 121457.2746 - 

ABC [16] 121441.03 121995.82 122123.77 - 

ABCLogistic [42] 121440.2 123314.12 - - 

BBO [20] 121426.9530 121508.0325 121688.6634 - 

CSA [21] 121425.61 - - - 

QPSO [25] 121424.6399 121586.9412 121994.0267 114.080 

DPSO 121424.127 121491.889 121597.205 35.842 

DPSO-Sine 121424.094 121459.909 121508.002 21.097 

 

7. CONCLUSIONS 
 
This paper utilizes the Democratic PSO (DPSO) 
algorithm to solve the economic dispatch problem, 
considering different operating constraints of the power 
generating units and of the power system. The DPSO 
algorithm is applied in original form, but also in a new 
form in which it is endowed with the chaotic Sine map. 
Including the Sine map has the purpose to increase 
original DPSO algorithm performance. The DPSO and 
DPSO-Sine algorithms have been tested on two systems 
in which the generating units are modeled taking in 
consideration the valve-point effect. The mathematical 
optimization model is nonlinear, having a higher 
complexity due to the number of variable involved, the 
type of equality and inequality restrictions and the fact 
that the objective function is non-convex. 
The results obtained by DPSO and DPSO-Sine 
algorithms shows that these are more performant 
(considering B, A, W items) than PSO algorithm, but 
also than other mentioned techniques in this article (GA, 
ACO, HS, TSA, EP, GSO, ABC). Also, the algorithm 
endowed with the Sine map (DPSO-Sine) has a better 
behavior than DPSO (considering B, A, W items). This 
shows that including the chaotic maps in the 
metaheuristic algorithms may increase their 
performances by obtaining better quality solutions. 
 

8. REFERENCES 
 
[1]. Parikh J, Chattopadhyay D. A multi-area linear 

programming approach for analysis of economic operation 

of the Indian power system. IEEE Transaction on Power 
Systems 1996; 11(1):52–8. 

[2]. Wood A, Wollenberg BF, Power Generation Operation and 

Control, John Wiley&Sons, New York, 1984. 
[3]. Fan JY, Zhang L. Real-time economic dispatch with line 

flow and emission constraints using quadratic 

programming. IEEE Transaction on Power Systems 1998; 
13(2):320–325. 

[4]. Chaturvedi KT, Pandit M, Srivastava L. Particle swarm 

optimization with time varying acceleration coefficients for 

non-convex economic power dispatch. International Journal 
of Electrical Power & Energy Systems 2009; 31(6):249-257. 



JOURNAL OF SUSTAINABLE ENERGY VOL. 6, NO. 3, SEPTEMBER, 2015 
 

ISSN 2067-5534 © 2015 JSE 126 

[5]. Fesanghary M, Ardehali MM. A novel metaheuristic 

optimization methodology for solving various types of 

economic dispatch problem. Energy,  2009; 34 (6): 757-766. 
[6]. Vijay R. Intelligent Bacterial Foraging Optimization 

Technique to Economic Load Dispatch Problem. 
International Journal of Soft Computing and Engineering 
2012; 2(2): 55-59. 

[7]. Moradi-Dalvand M, Mohammadi-Ivatloo B, Najafi A, 
Rabiee A. Continuous quick group search optimizer for 

solving non-convex economic dispatch problems. Electric 
Power System Research, 2012; 93: 93–105. 

[8]. Sinha N, Chakrabarti R, Chattopadhyay PK. Evolutionary 

programming techniques for economic load dispatch. IEEE 
Transaction on Evolutionary Computation 2003; 7(1): 83–94. 

[9]. Khamsawang S, Jiriwibhakorn S. DSPSO-TSA for 

economic dispatch problem with nonsmooth and 

noncontinuous cost functions. Energy Conversion and 
Management 2010; 51(2): 365–375. 

[10]. Lin W-M, Gow H-J, Tsai M-T. Combining of Direct 

Search and Signal-to-Noise Ratio for economic dispatch 

optimization. Energy Conversion and Management 2011; 
52(1): 487-493. 

[11]. Kuo CC. A novel coding scheme for practical economic 

dispatch by modified particle swarm approach. IEEE 
Transaction on Power Systems 2008; 23(4): 1825-1835. 

[12]. Wang S-K, Chiou J-P, Liu C-W. Non-smooth/non-convex 

economic dispatch by a novel hybrid differential evolution 

algorithm. IET Generation, Transmission & Distribution 
2007; 1(5):793–803. 

[13]. Kumar R, Sharma D, Sadu A. A hybrid multi-agent based 

particle swarm optimization algorithm for economic power 

dispatch. International Journal of Electrical Power and 
Energy Systems 2011; 33(1): 115-123. 

[14]. Pothiya S, Ngamroo I, Kongprawechnon W. Ant colony 

optimisation for economic dispatch problem with non-

smooth cost functions. International Journal of Electrical 
Power and Energy Systems 2010; 32 (5): 478–87. 

[15]. Selvakumar AI, K. Thanushkodi K. Optimization using 

civilized swarm: solution to economic dispatch with 

multiple minima. Electric Power System Research 2009; 
79(1): 8–16. 

[16]. Hemamalini S, Simon SP. Artificial bee colony algorithm 

for economic load dispatch problem with non-smooth cost 

functions. Electric Power Components and Systems 2010; 
38(7):786–803.  

[17]. Hardiansyah. Solving Economic Dispatch Problem with 

Valve-Point Effect using a Modified ABC Algorithm. 
International Journal of Electrical and Computer 
Engineering, 2013; 3(3): 377-385. 

[18]. Labbi Y, Attous Db, Mahdad B. Artificial bee colony 

optimization for economic dispatch with valve point effect, 
Front Energy 2014, 8(4): 449–458. 

[19] Bhattacharya A, Chattopadhyay PK. Solving complex 

economic load dispatch problems using biogeography-

based optimization, Expert Systems with Applications 
2010; 37(5): 3605–3615. 

[20]. Bhattacharya A, Chattopadhyay PK. Biogeography-based 

optimization for different economic load dispatch problems. 
IEEE Transaction on Power Systems 2010; 25(2): 1064–1077. 

[21]. Basu M, Chowdhury A. Cuckoo search algorithm for 

economic dispatch. Energy 2013; 60: 99-108. 
[22]. Banerjee S, Maity D, Chanda CK. Teaching learning based 

optimization for economic load dispatch problem considering 

valve point loading effect. International Journal of Electrical 
Power and Energy Systems, 2015; 73:456–464. 

[23]. Gaing Z-L. Particle swarm optimization to solving the 

economic dispatch considering the generator constraints. IEEE 
Transaction on Power Systems 2003; 18(3): 1187–1195. 

[24]. Abdullah MN, Bakar AHA, Rahim NA, Jamian JJ, Aman 
MM. Economic Dispatch with Valve Point Effect using 

Iteration Particle Swarm Optimization. 47th International 
Universities Power Engineering Conference (UPEC), 
London, UK, pp. 1-6, Sept. 2012. 

[25]. Hosseinnezhad V, Rafiee M, Ahmadian M, Ameli MT. 
Species-based Quantum Particle Swarm Optimization for 

economic load dispatch. International Journal of Electrical 
Power and Energy Systems 2014; 63: 311–322. 

[26]. Victoire TAA, Jeyakumar AE. Hybrid PSO–SQP for 

economic dispatch with valve-point effect. Electric Power 
System Research 2004; 71(1): 51–59. 

[27]. Cai J, Li Q, Li L, Peng H, Yang Y. A hybrid CPSO–SQP 

method for economic dispatch considering the valve-point 

effects. Energy Conversion and Management 2012; 53(1): 
175-181. 

[28]. Niknam T. A new fuzzy adaptive hybrid particle swarm 

optimization algorithm for non-linear, non-smooth and 

non-convex economic dispatch problem. Applied Energy 
2010; 87(1): 327-39. 

[29]. Wang Y, Li B, Yuan B. Hybrid of comprehensive learning 

particle swarm optimization and SQP algorithm for large scale 

economic load dispatch optimization of power system. Science 
China-Information Sciences, 2010; 53(8): 1566–1573. 

[30]. Kaveh A, Zolghadr A. Democratic PSO for truss layout 

and size optimization with frequency. Computers and 
Structures 2014; 130: 10–21. 

[31]. Gandomi AH, Yang XS. Chaotic bat algorithm. Journal of 
Computational Science 2014; 5(2): 224–232. 

[32]. Ghasemi M, Ghavidel S , Akbari E , Vahed AA. Solving 

non-linear, non-smooth and non-convex optimal power flow 

problems using chaotic invasive weed optimization 

algorithms based on chaos. Energy 2014; (73): 340-353 
[33]. Arul R., Velusami S. and Ravi G. Solving economic load 

dispatch problems using chaotic self adaptive differential 

harmony search algorithm. International Transaction on 
Electrical Energy Systems; 2015, 25(5): 845–858. 

[34]. Cai J, Li Q, Li L, Peng H, Yang Y. A hybrid FCASO-SQP 

method for solving the economic dispatch problems with 

valve-point effects. Energy 2012; 38(1): 346–353. 
[35]. Tsai MT, Yen CW. The influence of carbon dioxide 

trading scheme on economic dispatch of generators. 
Applied Energy 2011; 88(12): 4811–6. 

[36]. Basu M. Improved differential evolution for economic 

dispatch. International Journal of Electrical Power and 
Energy Systems 2014, 63: 855–861. 

[37]. Basu M. Economic environmental dispatch using multi-

objective differential evolution. Applied Soft Computing 
2011; 11(2): 2845–2853. 

[38]. Mahdad B, Srairi K. Solving practical economic dispatch 

using hybrid GA–DE–PS method, International Journal of 
System Assurance Engineering and Management 2014; 
5(3): 391–398 

[39]. Fraga ES, Yang L, Papageorgiou LG. On the modelling of 

valve point loadings for power electricity dispatch. Applied 
Energy 2012; 91: 301–303. 

[40]. He X, Rao Y, Huang J. A novel algorithm for economic 

load dispatch of power Systems. Neurocomputing 2016, 
171(1): 1454–1461. 

[41]. Niu Q, Zhang H, Wang X, Li K, Irwin GW. A hybrid 

harmony search with arithmetic crossover operation for 

economic dispatch. International Journal of Electrical 
Power and Energy Systems 2014; 62: 237–257. 

[42]. Shayeghi H, Ghasemi A. A modified artificial bee colony 

based on chaos theory for solving non-convex 

emission/economic dispatch, Energy Conversion and 
Management 2014; 79(3): 344–354.

 


