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Abstract - Energy is an indispensable and ever-

growing need in our daily lives. Due to the finite 

nature of our planet’s resources, the importance of 

renewable energy sources is increasing in tandem. For 

example, wind power plants (WPPs) are 

growingrapidly in use. In this studywehave calculated 

the relative efficiencies of 22 Turkish WPPs. As these 

WPPs are of different sizes, an initial cluster analysis 

was performed using data collected in the 2014-2016 

period. For each cluster, data envelopment analysis 

(DEA) was conducted to calculate the relative 

efficiencies of the WPPs. DEA-derived weightings 

were then used to rank WPPs by TOPSIS (Technique 

for Order Preference by Similarity to Ideal Solution). 

Finally, DEA and TOPSIS rankings were compared.  
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1. INTRODUCTION 

 
Energy availability is undoubtedly a key factor in 

the economic and social development of a country [1]. 
Turkey has been developing rapidly in many areas and, 
accordingly, energy consumption continues to increase 
with each passing year. However, Turkey’s heavy 
dependence on foreign markets to meet its energy needs 
carries risks in terms of energy supply security. In this 
context, use of domestic resources, reduction of the share 
of natural gas in electricity generation, and increasing the 
share of renewable energy sources have been gaining 
traction as possible solutions [2]. 

Figure 1 shows the change in Turkey’s foreign 
energy dependencyfor primary consumption in the 1990-
2014 period, expressed as a percentageof total 
consumption [3]. This table shows that Turkey remains 
highly dependent on foreign energy. 

Apart from the foreign energy dependency problem, 
the distribution of primary sources for Turkey’s power 
generation in 2017 clearly reveals that fossil fuels are still 
dominant (fig. 2) [4].  It is widely accepted today that the 
use of fossil fuels leads to increased air and 
environmental pollution as well as climate change [3]. 

 
Fig. 1. Turkey’s foreign dependency for primary 

energy consumption (1990-2014) expressed as a 

percentage of total consumption 

 
The aforementioned problems constitute serious 

obstacles to the healthy development of the country. 
Therefore, future energy policy should encourage the 
production and consumption of renewable energy sources 
to reduce the use of fossil fuels and external dependency, 
as well as take into account environmental impacts. It 
should be noted thatTurkey is in a geographical region 
quite suitable for generation of renewable energy from 
almost all sources [5]. 

Turkey is making significant progress in the field of 
renewable energy. Final data for 2017 indicate that 
Turkey's total installed capacity is 85200 MW. Although 
hydropower plants make up most of the country’s 
renewable energy sources, the total installed capacity of 
WPPs at the end of 2017 had reached 6872.1 MW. Figure 
3 shows the change in the total installed capacity of WPPs 
in Turkey by year [4, 6]. 

Wind is horizontal air movement over the earth’s 
surfacecaused by atmospheric pressure differences.Air 
moves from high-pressure to low-pressure regionsuntil 
the pressure is uniform [7]. Turkey's position between 
relatively cooler Europe and relatively warmer Asian and 
African systems leads to a wide temperature and climate 
gradient. Studies show that the Aegean, Marmara, and 
Eastern Mediterranean regions have high wind energy 
potential [8]. Turkey has an onshore wind potential of 
48000 MW, assuming a wind speed above 7.0 m/s [9]. By 
this estimate, the total installed capacity in 2017 
constitutes only 14.32% of this full potential. 
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Fig. 2. Distribution of Turkey’s primary power 

generation sources in 2017 
 
The first commercial WPP in Turkey became 

operational in 1998 with 8.7 MW of installed capacity in 
Çeşme, İzmir. Subsequently, there was no 
significantdevelopment related to wind energy until 2006. 
However, with the enactment of the Renewable Energy 
Law No. 5346 in 2005, the demand for renewable energy 
sources increased and in parallel, an increase in the 
number of WPPs was observed [10]. 

 
Fig. 3. Change in total installed capacity of Turkish 

WPPs in MW by year 

 

 
2. LITERATURE REVIEW 

 
Various studies in the literature have measuredthe 

relative efficiency of power plants using DEA. In Park 
and Lesourd’s study, the efficiencies of 64 South Korean 
fuel power plants are measured using DEA and the 

stochastic frontier approach (SFA), where the inputs are 
fuel quantity, installed power, and total manpower. The 
output is the net electrical energy output [11]. Sarica and 
Or assess the operational performance of thermal power 
plants and renewable power plants by using two DEA 
models successively [12]. In their study, Barros and 
Peypoch use a two-stage procedure to analyze the 
technical efficiency of Portuguese thermoelectric power 
plants for the period 1996-2004. The DEA model in the 
first stage ranks the plants where the book value of 
physical assets, number of workers, and operational costs 
are inputs, and electricity production and maximum 
capacity are outputs. In the second stage, the Simar and 
Wilson procedure is used to bootstrap DEA scores [13]. 
In a two-step procedure, Barros analyzes the relative 
efficiencies of 25 Portuguese hydroelectric plants. The 
Malmquist productivity index is calculated first and a 
Tobit regression is then estimated using the efficient 
Malmquist score [14].  Sözen et al. assess the operational 
performance and the environmental performance of 
Turkish thermal power plants by applying two DEA 
models successively [15]. Liu et al. determine the 
efficiency of Taiwanese thermal power plants withhigh 
installed capacity for the period 2004-2006 usinga DEA 
approach. The model uses installed capacity, electricity 
consumption in the power plant, and heating value of 
fossil fuels as inputs, and net electricity produced as 
output [16]. Iglesias et al. measure the productive 
efficiency of a group of wind farms in Spainover the 
2001-2004 period using both DEA and SFA. The inputs 
are installed capacity, number of full-time employees, and 
fuel; the only output is electricity produced [17]. Emre 
and Ömürgönülşen calculate the relative efficiency of 
WPPs in the Marmara region with a DEA model: 
installation and connection costs are inputs, with annual 
production, mean annual return, and return on investment 
as outputs [18]. Ömürgönülşen et al. measure the relative 
efficiency of WPPs in Turkey with DEA. The inputs are 
installation cost, average wind speed, and wind capacity 
factor, while outputs are meter capacity utilization rate 
and annual return [19]. 

 
 

3. DEA and TOPSIS 
 

3.1 DEA 

 
DEA is a technique based on linear programming. 

It incorporatesseveral entities called decision making 
units (DMUs) thatgenerate outputs from inputs. DEA 
measures the relative efficiencies of these DMUs for this 
activity. Essentially, it calculates a scalar measure of 
efficiency for DMUs having multiple inputs and outputs 
without preassigning weights or requiring an explicit 
functional relation between these inputs and outputs. A 
nonparametric approach, DEA creates a linear efficiency 
frontier consisting of the efficient DMUs and thus 
assesses the relative efficiency of all other DMUs. It 
measures the efficiency of each unit and identifieswhich 
DMUs act as peers if the unit under evaluation is not 
efficient [20, 21]. 

There are two common DEA models in the 
literature. The first one is known as the CCR model 

146.3 363.7
791.6

1329.15
1805.85

2312.15

2958.45

3762.1

4718.3

6106.05

6872.1

0

1000

2000

3000

4000

5000

6000

7000

8000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

M
W

Years



JOURNAL OF SUSTAİNABLE ENERGY VOL. 10, NO. 1, MARCH, 2019 

ISSN 2067-5534 © 2019 JSE  37 

introduced by Charnes, Cooper and Rhodes [22]. The 
second one is the BCC model developed by Banker, 
Charnes and Cooper [23]. The former deals with constant 
return to scale (CRS) whereas the latter deals with 
variable return to scale (VRS). CRS means that if an 
activity(�, �) is feasible then the activity (��, ��) is also 
feasible for every positive scalar � [24]. In other words, 
there is a proportional change in the outputs when the 
inputs are increased. This proportionality does not apply 
for VRS. 

The ratio of the weighted sum of outputs to the 
weighted sum of inputs gives the relative efficiency 
measure of a DMU. It should be noted that this ratio is 
less than or equal to unity for each DMU [16].The CCR 
model in ratio form is given below [22,24,25]: 

 max ℎ� = ∑ ����������∑ ����������                                                     (1) 

s.t. ∑ ����������∑ ������ ��� ≤ 1;     % = 1,2, … , ( ���, ��� ≥ 0;             + = 1,2, … , ,     - = 1,2, … , . 
 
where � is the considered DMU in the set of % = 1,2, … , ( 
DMUs; ℎ� the relative efficiency measure of the �-th 
DMU in the same set; ��� the amount of output + of the �-th DMU; ��� the amount of input - of the �-th DMU; ��/  the amount of output + of the %-th DMU; ��/  the 
amount of input - of the %-th DMU; ��� the weight for 
output + in the solution of the model; ��� the weight for 
input - in the solution of the model; . the number of 
inputs and , the number of outputs. 

Because the objective function is fractional, the 
model (1) given above is not easy to solve. In practice, the 
dual of the linear model is used [25]: 

 min 2� − 4(∑ ,��5 ��� + ∑ ,��7���� )                                  (2)                                                                                          
s.t. 2���� − 8 9/��/:

/�� − ,��5 = 0;        - = 1,2, … , . 

��� − 8 9/��/:
/�� + ,��7 = 0;          + = 1,2, … , , 9/ , ,��5 , ,��7 ≥ 0          ∀-, %, + 

 
 In contrast to the CCR model, there is an 
additional convexity constraint in the BCC model, of 
which the dual form is given below [23]: 
 min 2� − 4(∑ ,��5 ��� + ∑ ,��7���� )(3)                             (3) 
s.t. 2���� − 8 9/��/:

/�� − ,��5 = 0;         - = 1,2, … , . 

��� − 8 9/��/:
/�� + ,��7 = 0;           + = 1,2, … , , 

8 9/:
/�� = 1 9/ , ,��5 , ,��7 ≥ 0            ∀-, %, + 

 
 This is solved for each DMU. As explained 
before, there is an efficiency frontier consisting of the 
efficient DMUs, and DEA assesses the efficiency of other 

DMUs relative to the efficient ones. This means that the 
efficiency scores are calculated by considering the 
distance of a DMU from this efficiency frontier: if this 
score is equal to unity, the DMU is efficient; if the score 
is less than unity, the DMU is not efficient. 
 Both CCR and BCC models are applied either in 
input-oriented (I) or output-oriented (O) fashion. An 
input-oriented model tries to minimize inputs subject to 
given output levels, and an output-oriented model tries to 
maximize the outputs subject to given input levels [25]. 
 
3.2 TOPSIS 

 
Hwang and Yoon were the first to develop 

TOPSIS in 1981 [26]. This technique determines the best 
alternative by means of a compromise solution that has 
the shortest Euclidean distance from thepositive ideal 
solutionandthe farthestEuclidean distance from the 
negative ideal solution[27]. 

Seven steps of applying TOPSIS are listed below 
[28]: 

1)  A performance decision matrix <�/ is 
established. 
 

<�/ = = >�� >�? ⋯ >�:>?� >?? ⋯ >?:⋮ ⋮ ⋮ ⋮> � > ? ⋯ > :
B                                     (4)  

 

2) By normalizing this decision matrix <�/, the 
matrix C�/ is obtained. C�/ consists of +�/  values 
calculated as follows: 

 +�/ = D�EF∑ D�EG����     - = 1,2, … , .    % = 1,2, … , (          (5) 

 

C�/ = = +�� +�? ⋯ +�:+?� +?? ⋯ +?:⋮ ⋮ ⋮ ⋮+ � + ? ⋯ + :
B                                      (6) 

 

3) By weighting the columns of C�/, the matrix H�/ 
is obtained.  H�/ consists of ��/  values calculated 
as follows: 

 ��/ = I/+�/- = 1,2, … , .    % = 1,2, … , (                  (7) 

 

H�/ = = ��� ��? ⋯ ��:�?� �?? ⋯ �?:⋮ ⋮ ⋮ ⋮� � � ? ⋯ � :
B                                   (8) 

 

Here, I/  is the weight for the %-th criterion and∑ I/:/�� =1. 

4) The positive ideal solution (J�7)  
 J�7 = KLmax ��/ | % ∈ OP, Lmin ��/ | % ∈ OQP, (- =1,2, … , .)R = S��7, �?7, … , �:7T                                 (9) 

 

and the negative ideal solution (J�5)  
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J�5 = KLmin ��/ | % ∈ OP, Lmax ��/ | % ∈ OQP, (% =1,2, … , .)R = S��5, �?5, … , �:5T                                    (10) 

 

are determined. Here, O is the set of criteria with 
positive effect and OQ is the set of criteria with 
negative effect. 
 

5) By using the m-dimensional Euclidean distance, U�7 and U�5  are calculated. These are 
separation measures of each alternative from J�7 
and J�5 respectively. The calculation is as 
follows: 
 U�7 = F∑ (��/ − �/7)?:/�� ,     - = 1,2, … , .              (11) 

 U�5 = F∑ (��/ − �/5)?:/�� ,     % = 1,2, … , (               (12) 

 

6) The relative closeness value VV�7 is calculated as 
follows: 

 VV�7 = W X�YX�Z7X�Y[ ;      0 ≤ VV�7 ≤ 1;    - = 1,2, … , .(13) 

 

7) The alternatives are ranked according to VV�7 
value in descending order. 

 

 

4. APPLICATION 
 
In this study, we used a CCR-O model with two 

inputs and one output. Our reason for usingCCR-O model 
is to maximize the output level subject to the given input 
levels. The first input is annual average energy production 
of WPPs in MWh calculated by means of a Weibull 
distribution. Details of the calculations are given in 
Section 4.1. The second input is installed capacity of the 
WPPs in MW, and the output is the actual energy 
production of WPPs in MWh.  

 
4.1 Data Preprocessing 

 
Initially we chose 31 WPPs, the installed capacity of 

which remained unchanged and the data for which were 
available during the2014-2016 period. One input is the 
annual average energy production in MWh of the WPPs 
and the other input is the installed capacity in MW, as 
mentioned above. 

The data for the installed capacity are available on 
the web sites of the Energy Market Regulatory Authority 
of the Republic of Turkey (EPDK) [29]and the Turkish 
Wind Energy Association (TÜREB) [30]. 

Below is the explanation of how the annual average 
energy production was calculated by means of a Weibull 
distribution. 

Kinetic energy of airflow with a certain velocity and 
mass is. 

 \ = �? .�?                                                                       (14)                             

where . is the mass of airflow in kg and � is the velocity 
of airflow in m/s. Mass flow rate of airflow with a certain 
density through a cross-sectional area is 
 .] = ^J�                                                                  (15)                                                               
 
where ^ is the air density in kg/m3 and J is the cross-
sectional area in m2. Making use of the equations (14) and 
(15) the energy per unit time, power can be calculated as 
 _ = �? ^J�`                                                              (16)                                                           

 
where J now represents the swept area of turbine. Instead 
of utilizing the equation in (16), we opted for the the wind 
speed probability density function, which is usually a 
Weibull distribution [17].  
 The Weibull distribution is 
 a(�) = �b (�b)�5� exp We− �bf�[                                  (17)                                                  

 
Here, g represents scale factor in m/s, � represents shape 
factor [31]. 
 For the calculation of annual average energy 
production, the Weibull parameters at turbine tower 
height are required. However, the data we received from 
the General Directorate of Energy Affairs were for the 
scale and shape factors at 100 m. For this reason, we 
adjusted these gD and �D values determined at 
anemometer height to the tower height h by using the 
following relationships[32]: 
 g(h) = gD(h hD⁄ ):                                                     (18)     
                                                             �(h) = �Dj1 − 0.088 ln(hD 10⁄ )n/j1 − 0.088ln (h/10)n 
(19) 
 
where h and hD are in m and the power law exponent (is 
given by 
 ( = j0.37 − 0.088 ln gDn/j1 − 0.088 ln(hD 10⁄ )n   (20)                                                      

 
The next step was to find out how many turbines 

are in operationat each WPP, which model they have, and 
how high they are. Normally, the power curve of turbines 
is given for the standard air density ^ = 1.225 kg/m3. 
However, the air density at tower height differs from the 
standard. We therefore adjusted the power curve to the air 
density at tower height: first, we calculated the air density 
at tower height by using the following equation [33]:  

 ^(h?) = ^(h�)exp (5(rG5r�)s )                                    (21)                                                         

 
where t=7,4 km. To adjust the power curve of turbines 
used in the WPP to the air density at tower height, we 
used the relationship[34]: 
 ���uv = ��uw(x�yzx��y{)�|                                                   (22)                                                   

 
Average power (expected value) can be calculated 

by using the equation 
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_} = ~ _(�)a(�)����                                                 (23)                                                

 
where _(�) is the adjusted power curve of the turbine. 

Last but not least, _} should be multiplied by the 
total hours in a year and availability. Assuming that a 
wind turbine has a lifetime of 20 years, we took the 
average availability for the first 10 years to be 
approximately 97% and 94% for the second ten years 
[35]. 

As for the outputs, the data are available on the 
website for the Energy Market Regulatory Authority of 
the Republic of Turkey. 

 
4.2 Results 

 
There is a key DEA requirementfor DMUs to be 

homogeneous. In our study, there are 31 WPPs with 
installed capacities designated as very large, large, 
medium, and low. To establish homogenous DMUs, we 
divided these 31 WPPs into clusters by applying cluster 
analysis [36]. We applied the average linkage method to 
cluster the WPPs, and as seen in the dendrogram in Table 
1,ended up with two main clusters (Cluster A and Cluster 
B) with 11 WPPs each. Cluster A consists of WPPs with 
relatively low installed capacity and Cluster B consists of 
WPPs with medium installed capacity. We eliminated the 
last nine WPPs with relatively large and very large 
installed capacity because the clusters they formed were 
too small.  

Cooper et al. emphasize that the number of DMUs 
(() should be much greater than the total number of 
inputs and outputs (. + ,). A rough rule is to have ( 
equal to or greater thanmaxS . x ,, 3 x(. + ,) T[37]. 

Since we have two inputs and one output in this 
study, maxS 2 x 1, 3 x(2 + 1) T = 9. We have two 
clusters each with 11 WPPs, so ( = 11. Therefore, the 
condition for the DEA model to have an efficiency 
discrimination among DMUs in each cluster is fulfilled. 

For each cluster (Cluster A and Cluster B)the DEA 
CCR-O model wasapplied for the years 2014-2016. 

The two inputs and one output used in DEA 
constitute three criteria in TOPSIS, i.e. the first criterion 
is the calculated annual average energy production, the 
second criterion the installed capacity, and the third 
criterion the actual energy production. The steps for 
deriving weights from DEA for criteria in TOPSIS are as 
follows: 

1) The CCR weights of every individual DMU for 
each input and output are written in vector form, 
i.e. there are . + , vectors in total.  

2) These vectors are normalized. 
3) The average of elements in the normalized 

vectors are calculated.     
4) These averages are scaled to sum 1. 
 The calculated weights are given in Table 2. 
The weights calculated previously were assigned to 

the criteria. After following the steps mentioned in 3.2 the 
alternatives were ranked. Rankings resulting from both 
DEA and TOPSIS are given in Table 3.  

 
 
 

 
 

Table 1. Dendrogram of the cluster analysis applied 
Cluster Weights for year 2014 Weights for year 2015 Weights for year 2016 

CR1 CR2 CR3 CR1 CR2 CR3 CR1 CR2 CR3 
A 0.30 0.30 0.40 0.36 0.26 0.38 0.33 0.27 0.40 
B 0.35 0.29 0.36 0.30 0.31 0.39 0.33 0.30 0.37 

 

Table 2. Weights in TOPSIS derived by DEA     (CR: 

Criterion) 

 
 

Table 3. Rankings obtained by both DEA and TOPSIS 

 
 

In order to test the similarity between the rankings 
obtained, we conducted Spearman’s rank test for each 
group andyear. The hypotheses were as follows [38]: t� : There is  no  correlation  between  the  ranks  of  

individual  DMUs  obtained  by DEA and TOPSIS. t� : There is a correlation between the ranks of 
individual DMUs obtained by DEA and TOPSIS. 
As shown in Tables 4 - 9, there is a significant 

correlation between the ranks of individual DMUs 
obtained by DEA and TOPSIS. 
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Table 4. Spearman’s rank test for Cluster A in 2014 

Correlations 

 
DEA 

RANK 
TOPSIS 
RANK 

Spearman's rho DEA 
RANK 

Correlation 
Coefficient 

1,000 ,961** 

Sig. (2-tailed) . ,000 

N 11 11 

TOPSIS 
RANK 

Correlation 
Coefficient 

,961** 1,000 

Sig. (2-tailed) ,000 . 

N 11 11 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 5. Spearman’s rank test for Cluster A in 2015 
Correlations 

 
DEA 

RANK 
TOPSIS 
RANK 

Spearman's rho DEA 
RANK 

Correlation 
Coefficient 

1,000 ,879** 

Sig. (2-tailed) . ,000 

N 11 11 

TOPSIS 
RANK 

Correlation 
Coefficient 

,879** 1,000 

Sig. (2-tailed) ,000 . 

N 11 11 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 6. Spearman’s rank test for Cluster A in 2016 

Correlations 

 
DEA 

RANK TOPSIS RANK 

Spearman's rho DEA RANK Correlation 

Coefficient 
1,000 ,920

**
 

Sig. (2-tailed) . ,000 

N 11 11 

TOPSIS 

RANK 

Correlation 

Coefficient 
,920

**
 1,000 

Sig. (2-tailed) ,000 . 

N 11 11 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Table 7. Spearman’s rank test for Cluster B in 2014 

Correlations 

 
DEA 

RANK 

TOPSIS 

RANK 

Spearman's 

rho 

DEA RANK Correlation 

Coefficient 
1,000 ,853

**
 

Sig. (2-tailed) . ,001 

N 11 11 

TOPSIS 

RANK 

Correlation 

Coefficient 
,853

**
 1,000 

Sig. (2-tailed) ,001 . 

N 11 11 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Table 8. Spearman’s rank test for Cluster B in 2015 

Correlations 

 

DEA 

RANK 

TOPSIS 

RANK 

Spearman's rho DEA RANK Correlation 

Coefficient 
1,000 ,952

**
 

Sig. (2-tailed) . ,000 

N 11 11 

TOPSIS 

RANK 

Correlation 

Coefficient 
,952

**
 1,000 

Sig. (2-tailed) ,000 . 

N 11 11 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

Table 9. Spearman’s rank test for Cluster B in 2016 

Correlations 

 DEA RANK 

TOPSIS 

RANK 

Spearman's rho DEA RANK Correlation 

Coefficient 
1,000 ,920

**
 

Sig. (2-tailed) . ,000 

N 11 11 

TOPSIS 

RANK 

Correlation 

Coefficient 
,920

**
 1,000 

Sig. (2-tailed) ,000 . 

N 11 11 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

5. CONCLUSION 
 
The global demand for energy is continually 

increasing. While different means of energy production 
remain available, renewable energy isarguably the 
mostpromising from the standpoint of sustainability and 
mitigation of environmental impact. Windconstitutes a 
key renewable energy source of ever-growing importance. 
In this study, we have evaluated WPPs —in wide use 
globally— with respect to efficiency using the DEA 
technique.  

Multi-criteria decision making (MCDM) techniques 
have been developed to make various decisions in daily 
life. In cases where there are multiple criteria that are 
often conflicting with each other, MCDM techniques help 
the person to scan, prioritize, rank, or select among finite 
decision alternatives[26]. Prioritizing means that some 
criteria play more important roles than others, which is 
apparent in the weights assigned to these criteria. Various 
criteria exist for weighting methods. TOPSIS is a very 
frequently used MCDM technique in which weights are 
assigned to criteria to rank the alternatives and determine 
the best.  

In this study, weights used in TOPSIS were derived 
from DEA. The derivation procedure for the weights is 
explained in section 4.2. The rankings obtained by DEA 
and TOPSIS techniques were compared, and it was found 
that there is a significant correlation between the ranks of 
individual DMUs obtained by DEA and TOPSIS. 

There is no study in the literature for WPP 
efficiency determination that combines DEA and TOPSIS 
techniques. Therefore, our study provides a new approach 
for ranking WPPs by using these two techniques. 
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