SIMULATION OF THE EFFECT OF TEMPERATURE, DEFECT DENSITY AND ABSORBANT THICKNESS ON CIS BASED SOLAR CELLS WITH SCAPS-1D SOFTWARE

EL FARRI. H, BOUACHRI. M, FAHOUME. M Laboratory of Physic of Condensed Material LPMC Department of Physic, Ibn Tofail University, Kenitra, Morocco haythamelfarri@gmail.com, mohsine.bouachri@gmail.com, mfahoum@yahoo.fr

Abstract - In this paper, the performance of CIS Based solar cells was investigated, using a simulation program named SCAPS-1D Software (Solar Cells Capacitance Simulator). CIS cell structure is based on Cu(In, Ga), $(Se,S)_2$; which is a semiconductor compound as an absorber layer; un-doped Zinc Oxyd (i) ZnO as a window layer, and Sulfide Cadmium as a Buffer layer, with an efficiency of n=17%. We studied the influence of different layers' thickness and their defect densities, working temperature and absorber carrier density on the CIS based solar cells. The photovoltaic parameters have been calculated, and we have obtained the optimal values of every constraint cited above. As a result, we obtained a new high efficiency value of 19.71%, under air mass (AM) 1.5 and 100 mW/cm² illumination and the area of this device was $0.15 \text{ cm}^2[8]$.

Keywords: Solar cells, SCAPS-1D, defect density, photovoltaic parameters, CIS.

1. INTRODUCTION

The Copper Indium Selenide (CIS) based solar cells (CuInSe₂), is a chalcopyrite semiconductor promoter for photovoltaic applications, because of its high absorption coefficient, in the range of the solar spectrum and its electrical and optical properties which are depending on the preparation conditions and the processing techniques. It is a material which belongs to the chain of chalcopyrite materials. It was synthesized for the first time in 1953 by Hahn [5]; before being offered in 1974, for photovoltaic applications. A first review of this type of material was developed by Shay and Wernick [5]. In 1983, CIS has been developed as thin polycrystalline layers, and as an active layer. In Crystallography, CIS is a semiconductor that belongs to the group I-III-IV2 and crystallizes into two allotropic structures: Sphalerite structure and chalcopyrite structure, with direct band gap (the band Gap of our material choosing here is 1.04 ev). This type of material is very promoter for the production of solar cells' batteries in thin layers.

In our case, we will study the influence of high temperature, absorber layer thickness and its defect density, and buffer layer thickness and its carrier density, on the performance of CIS based solar cells thin films, using SCAPS-1D software (Solar Cells Capacitance Simulator), which is used to calculate the photovoltaic parameters at sunder standard illumination (AM1.5G, 100 mW/cm², 300K)[8]. The goal of these simulations is to optimize the high efficiency of this material (η =17% as sample solar cells before the simulation), in order to obtain a better efficiency of the said solar cells.

2.NUMERICAL SIMULATION

SCAPS (a Solar Cell Capacitance Simulator) is a one dimensional solar cell simulation program developed in the Department of Electronics and Information Systems (ELIS) at the University of Gent, Belgium [1].

In this paper, we study some parameter optimization of solar cells, using SCAPS-1D software. The principle of SCAPS software is based on four equations namely:

a. The poisson equation:

$$\frac{d^2\psi(x)}{dx^2} = \frac{e}{\varepsilon_0\varepsilon_r} \left(p(x) - n(x) + N_B - N_A + \rho_p - \rho_n \right)$$
(1)

Where: $\Psi(x)$ is electrostatic potential, P(x) and n(x) are respectively electron and hole density, $\epsilon 0$ and $\epsilon rare respectively vacuum and relative permittivity, <math>N_D$ and N_A are respectively charged impurities of donor and acceptor, and ρ_n and ρ_p are respectively electron and hole distribution.

b. The continuity equations of electrons and holes:

nd
$$\frac{dj_{R}}{dx} = G - R$$
(2)
$$\frac{dj_{P}}{dx} = G - R$$
(3)

Where: J_n and J_p are respectively electron and hole current densities, R is the recombination rate, and G is the generation rate [6,1].

c. The equations of carrier transport in semiconductors occurs by drift and diffusion:

$$\boldsymbol{J}_{\boldsymbol{p}=\boldsymbol{D}_{\boldsymbol{p}}\frac{d\boldsymbol{p}}{d\boldsymbol{x}}+\boldsymbol{\mu}_{\boldsymbol{p}}\frac{d\boldsymbol{\varphi}}{d\boldsymbol{x}}} \tag{4}$$

A

Where μ_n and μ_p are respectively electron and hole mobility. In this article, we study the influence of high temperature, thickness of absorbent layer and its defect density, and CdS buffer layer and its defect density on the performance of CIS based solar cells thin films. The goal of this simulation is to optimize the best high efficiency of CIS based solar cells, which would be made and used as photovoltaic solar cells.

3. RESULTS AND DISCUSSION

3.1 The Influence of Absorber Carrier Density on the CIS Based Solar Cells

In the theory of semiconductors, especially in PN Junction, we have a model that explains the influence of carrier density (N_A) on the characteristics of CIS Based solar cells; it is described by the following equations [7]:

$$I_0 = Aqn^2 \left(\frac{D_e}{L_e N_A} + \frac{D_h}{L_h N_D} \right)$$
(5)

$$V_{OC} = \frac{KT}{q} \ln \left(\frac{I_L}{I_0} + 1\right) \tag{6}$$

Where:

 I_0 is the saturation current, A is the quality factor of the diode, q is the electronic charge, n_i is the intrinsic concentration, D_e and D_h are respectively the diffusion coefficients of electron and hole, L_e and L_h are respectively diffusion lengths of electron and hole, N_A and N_D are respectively the acceptor and donor doping concentrations, K is the Boltzmann's constant, T is the temperature, I_L is the light generated current, and V_{OC} is the open circuit voltage [7].

We can notice from these equations, that the saturation current density will be decreasing when the absorber carrier density N_A is increasing, with an increase in open circuit voltage V_{OC} . This can be explained by the fact that higher carrier densities will enhance the recombination process, which will reduce the probability of photon-generated electron's collection, with a reduction of the long wavelength photons. In the CIS layer, the photons of long wavelength will be deeply absorbed, therefore, the collected efficiency of the electrons created there, is more dependent on the diffusion effect [4].

Fig.1. CIS Based Solar Cells section

 Table 1. Optic and electric parameters of CIS based solar cells

Parameters	i-ZnO	CdS	CIGS
Thickness (µm)	0.200	0.100	2.000
Band Gap (eV)	3.300	2.420	1.040
Electron Affinity	4.100	4.10	4.300
(eV)			
Dielectric	9.000	10.000	10.000
Permittivity			
(relative)			
CB Effective	4.000E+18	3.000E+18	1.000E+19
Density of States			
(cm ⁻³)			
VB Effective	1.000E+19	1.800E+19	1.000E+19
Density of States			
$(cm^{-3})^{-1}$			
Electron	1.000E+8	1.000E+7	1.000E+7
Thermal			
Velocity (cm/S)			
Hole Thermal	1.000E+8	1.000E+7	1.000E+7
Velocity (cm/S)			
Electron	1.000E+2	1.000E+2	1.000E+2
Mobility			
(cm ² /V.S)			
Hole Mobility	2.500E+1	2.500E+1	2.500E+1
$(\text{cm}^2/\text{V.S})$			

3.2 The Effect of Thickness on CIS Based Solar Cells

3.2.1 The Influence of Thickness Absorber Layer

We study the effect of thickness of the absorber layer on cell performance, by changing this parameter from 2000 nm to 3800 nm, and keeping the other material parameters of different layers unchanged. Figure 1 below shows the cell performance with variable absorber layer of CIS. We can notice that the short current density (J_{sc}) , Open circuit voltage (Vco), Fill factor (FF) and High efficiency (η) are increasing with an increasing thickness of CIS layer. This can be explained by the high absorption degree of the thicker absorber layer, which will absorb more photons with longer wavelengths [2], and will also contribute to the generation of electron-hole-pairs. Also, we can notice from the graph in Figure 1 that J_{sc} decreases linearly when the CIS layer thickness is less than 2800 nm. This can be explained by an incomplete absorption of the incident photons with an increasing recombination of photo-generated carriers at the back contact [4]. It can be found that the efficiency is increasing with the increase of CIS thickness, but when the layer is over 3400 nm, the efficiency has a much slower increasing rate (+0.07%); that is this value of thickness is enough to absorb most of the incident photons.

Fig.2. The effect of CIS layer thickness on solar cells performance

3.2.2 The Effect of Window Layer Thickness

We study in this part, the influence of the window layer thickness (ZnO), on the performance of CIS based solar cells. We change the thickness of window layer from 40 nm to 200 nm and keep the other material parameters unchanged. We can notice from the graphs in Figure 2 below that the Fill Factor is constant when ZnO thickness increases, with a relative decrease in open circuit voltage (from 0.51701 V to 0.5166 V). Physically, this can be explained by the fact that the increase in TCO thickness induces an increase in the optical absorption in the layer of the incident light at the front side of the cell [3]. The longer light and longer path-length will be proportional to the thickness, when the optical absorption is linked in the internal scattering .As a summary concerning the effect of ZnO layer thickness on the efficiency of solar cells, we can say that the highest value of efficiency is 17,97% for 40 nm of ZnO layer thickness, with a continuous decrease of this performance to reach 17,84% for 200 nm of ZnO thickness. This loss of efficiency is explained by the decrease in number of photons crossing through the ZnO layer with the thickness, because of the decrease of current density participating in the photovoltaic process. From this simulation, we can conclude that the increase in window layer thickness decreases the cell performance.

performance.

3.2.3 The Effect of Buffer Layer Thickness

The logical criteria to select a buffer layer are specific; it must be n-type, or i-type to make a good junction partner with the absorber layer, and its resistivity must be the highest to reduce the possibility of shunting of a junction [2]. In this part, we change the buffer layer thickness from 35 nm to 100 nm. Figure 3 shows the effect of CdS buffer layer thickness on solar cells' performance. As we can notice, on one side the short current density Jsc decreases with an increase in buffer layer thickness. On the other side, we can also notice that the open circuit voltage and Fill Form are relatively decreasing (from 0.516v to 0.517v for Vco and from 79.28% to 79.40% for FF). This can be explained by the fact that the quantity of photons that reach the absorber layer should decrease, due to the increase of the absorption in the CdS layer. When the CdS thickness increases, the material absorption increases too, however, the electron-hole pairs proceeded from these absorbed photons recombine in the CdS and are not collected [5]. Another effect of the buffer layer thickness is the increase of series' resistance; which is proportional to the buffer layer thickness.

Fig.4. The effect of CdS thickness on solar cells' performance.

3.3 The Effect of Temperature on CIS- based Solar Cells' Performance

Usually, the solar cell panels are installed outdoor, where the sunlight will cause the heating of these solar panels, and therefore an increase in the temperature. In this part of the article, we study the influence of the operating temperature on the CIS based solar cells' performance, by changing the temperature values from 300 K to 390 K. The simulation results illustrate that the different performance parameters of solar cells are decreasing with an increase in temperature. This can be explained by the dependence between the temperature and the reverse saturation current. However, this increase in the current due to an increasing temperature will also decrease the open circuit voltage. The increase in operating temperature gives an additional energy to the electrons in solar cells. This makes them unstable at higher temperatures, and more likely to be recombined with the holes before reaching the depletion region and finally be collected.

3.4 The Defect Density Effect on CIS-based Solar Cells' Layers

Defect density is one of the criteria used to determine the electronic properties of semiconductors. These defects are subdivided into four mportant categories: donors and acceptors, which play an important role to produce a p-n junction, defects as recombination centers that limit the lifetime of minority carries and hence the efficiency of these cells, the third group is responsible for carrier scattering or recombination, and the last group has defects which trap carriers and influence the space charge that determines the carrier transport. They represent: generation, recombination, and transport process inside the absorber layer [4]. In this part of the article, we study the effects of defect density on CIS-based solar cells, in the different layers of the photovoltaic device. To understand more this simulation, we have varied the defect density of one layer while keeping it constant for the other layers.

Fig.5. The effect of temperature on CIS-based solar cells' performance.

3.3.1 The Defect Density Effect of Absorber Layer

In this step, we have varied the CIS layer defect density from 10^{14} cm⁻³ to 10^{19} cm⁻³, while keeping the buffer layer (CdS) and window layer (ZnO) defects constant. Figure 5 below shows the defect density effect on CIS solar cell's performance. We can notice that when the value of defect density increases from 10¹⁴ cm⁻³ to 10^{17} cm⁻³, the open circuit voltage, fill form and efficiency increase, with a small decrease in short current density. However, after a value of 10^{17} cm⁻³, all the parameters will be degraded, except the open circuit voltage which keeps increasing with the increase of CIS defect density [7]. The reason behind the decrease of J_{sh} is the creation of a current named "Leackage Current", which is a result of the recombination with localized energy levels, created by the defects [7]. As a principal result of that, we can see a dropping in the values of high efficiency (from 17.84 % to 3.61%).

Fig.6. The effect of absorber layer defect density on solar cells' performance.

3.3.2 The Defect Density Effect of Buffer Layer

The defect density effect of buffer layer (CdS) has been studied here, by changing the defect density values from 10^{13} cm⁻³ to 10^{19} cm⁻³, while keeping the window layer (ZnO) and absorber layer (CIS) defects constant. From Figure 6 below, we can notice that the short current density Jsh decreases from 44.2327 mA/cm² for 10¹³ cm⁻³, to 42.8177 mA/cm² for 10^{19} cm-3; therefore a decrease of 3.2%. The open circuit voltage also decreases from 0.5176 v for 10^{13} cm^{-3} to 0.5162 v for 10^{19} cm^{-3} ; therefore a decrease of 0.27%. The Fill Form increases from 77.24% for 1013 cm⁻³ to 79.37% for 10^{19} cm⁻³; therefore an increase of 2.13%. The efficiency curve has two important zones: the first zone is where $\boldsymbol{\eta}$ increases to its maximal value (17.92% for 10^{16} cm⁻³), and the second one is where η decreases with an increase of buffer layer defect density (from 17.92% for 10¹⁶ cm⁻³, to 17.54% for 10^{19} cm⁻³). From these results, we can say that the CdS defect density can increase the efficiency of CIS based solar cells, for values fewer than 10^{16} cm⁻³.We can observe that the defect density in Buffer layer has little effect in η [5], FF and J_{sh}, with unchanging values of V_{OC}.

Fig.7. The effect of buffer layer defect density on solar cells' performance

3.3.3 The Defect Density Effect of Window Layer

We changed in this part of the simulation, the defect density of the window layer from 10^{13} cm⁻³ to 10^{19} cm⁻³, while keeping the defect densities of buffer layer and absorber layer constant. Figure 7 below shows that the photovoltaic parameters stay relatively the same with an increase of window layer's (ZnO) defect density. As a result, the rise of defect density in the ZnO layer has little impact on the performance parameters of CIS Based solar cells.

Fig.8. The effect of buffer layer defect density on solar cells' performance.

3.3.4 The Defect Density Effect of Window Layer

We changed in this part of the simulation, the defect density of the window layer from 10^{13} cm⁻³ to 10^{19} cm⁻³, while keeping the defect densities of buffer layer and absorber layer constant. Figure 7 below shows that the photovoltaic parameters stay relatively the same with an increase of window layer's (ZnO) defect density. As a result, the rise of defect density in the ZnO layer has little impact on the performance parameters.

Fig.9. The effect of window layer defect density on solar cells performance.

4. CONCLUSIONS

We analyzed the variations of, absorber layer thickness, absorber holes, and defects densities on CZTS based solar cells. We have shown the following facts, using SCAP-1D package,, and we found that the electrical parameters are affected significantly [19]

The CIS-based Solar Cells have been studied, after optimizing the values of all parameter performance, we found that the value of solar cells efficiency is 20.45%, with values of : 80.37%, 46.80855 mA/cm² and 0.5435 v for Fill Form, short current density and open circuit voltage respectively.

ACKNOWLEDGEMENTS

The authors would like to thank the department of Sciences physics of university Ibn Tofail Kenitra, and the Laboratory of Physics of Condensed Material (LPMC), for funding this research.

We acknowledge gratefully, to Professor M.Burgelman, department of electronics and information systems (ELIS), of the university gent, Belgium, for providing the SCAPS simulation software.

BIBLIOGRAPHIE

[1] Ahnood, A. (2015). Orthogonal Thin Film Photovoltaics on Vertical Nanostructures. Nanoscale Reaserch Letters , 10.

 $\left[2\right]$ al, J. T. (2015). optimization of the output parameters in kesterite-based solar cells by AMPS-1D. IEEE , 1-6.

[3] Burgelman M, N. P. (21 february, 2000). modelling polycrystalline semiconductor solar cells. 361-362, 527-532.

[4] Burgelman, M. (2004). Marc Burgelman. Prog. Photovolt: Res. App , 143-153.

[5] Ghane, P. (2012). FABRICATION AND ANALYSIS OF CIGS NANOPARTICLE-BASED THIN FILM SOLAR CELLS. West Lafayette: Disclaimer.

[6] Gordon, R. (2000). Criteria for Choosing Transparent Conductors. MRS bulletin, 25(08), 52-57.

[7] H, K. (2008). Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using. Appl Phys Express .

[8] HADDOUT, A. (2019). Influence of CZTS Layer Parameters on Cell Performance of Kesterite Thin-Film Solar Cells. Springer nature Singapore , 640-646.

[9] Katagiri H, J. K. (2008). Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl Phys Express .

[10] Konan, F. K. (2019). Numerical Simulations of Highly Efficient Cu2FeSnS4 (CFTS) Based Solar Cells. INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH, 1-8.

[11] Mostefaoui, M. (2015). Simulation of High Efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia , 736-744.

[12] Movlas, H. (2014). Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis. Optik , 67-70.

[13] Obreja, V. (2005). The Reverse Leakage Current of Present-Day Manufactured Silicon PN Junctions and Their Maximum Permissible Operation Temperature. researchgate, 1-3.

[14] Tchognia JHN, A. Y. (2015). Optimization of the output parameters in kesterite-based solar cells by AMPS-1D. international renewable and sustainable energy conference (IRSEC), 1-6.

[15] Tchognia, J. H. (2015). Optimization of the output parameters in kesterite-based solar cells by AMPS-1D. IEEE , 1-6.

[16] The Reverse Leakage Current of Present-Day Manufactured Silicon PN Junctions and Their Maximum Permissible Operation Temperature. (2005). Researchgate, 1-3.

[17] Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes. (2017). IOP Science , 1-7.

[18] Tivanov, M. (2012). Effect of Absorbing Layer Thickness on Efficiency solar cells based on Cu(In,Ga)(S,Se)2. Przeglad Elektrotechniczny, 321-323.

[19] Wanda, M. D. (2016). Numerical Investigations and Analysis of Cu2ZnSnS4 Based Solar Cells by SCAPS-1D. International Journal of Photoenergy, 1-9.

[20] Zhao, X. (2015). Solvothermal Synthesis and Characterization of CuInS2, CuInSe2 and AgInS2 Nanoparticles from Single Source Precursors. Ontario.

[21] Zhibin Yang 1, Z. Y. (2019). Enhancing electron diffusion length in narrow bandgap perovskites for efficient monolithic perovskite tandem solar cells. Chemistry & Nanoscience Center, National, 1-9.