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Abstract - Deterministic and stochastic models play an 
important role in engineering, economics, and the 
natural sciences. Despite this, the development of 
stochastic modelling skills in engineering students is 
less emphasized, and this part of modelling knowledge 
is less well founded in secondary education. The 
concept of sustainable education is based on the idea 
that education is driven by the implication and energy 
of the students and teachers and their natural energy 
for learning is continuously renewed. In this article, we 
describe an approach that uses simple tools to highlight 
the role and importance of the stochastic approach in 
engineering and also serves as a model for developing 
application skills that equip learners with the 
knowledge and values needed to build a more 
sustainable and resilient future for all. 
 
Keywords: stochastic modeling, sustainable education, 
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1. INTRODUCTION 
 

Sustainable education is an approach to teaching and 
learning that emphasizes the principles and practices of 
sustainability. It aims to empower learners to make 
informed decisions and take actions that contribute to 
creating a more sustainable world. The key aspects of 
sustainable education are interdisciplinary approach, 
critical thinking and problem-solving, system thinking, 
experimental learning, global perspective community 
engagement, and lifelong learning. Therefore, young 
generation need the ability of analysing complex problems 
and develop creative solutions while considering all the 
influence factors. For example, the success of a business 
plan or the return on an investment is influenced by many 
unforeseen circumstances such as financial conditions or 
the behaviour and decisions of partners and competitors. 
Although there is no doubt about the random nature of the 
outcome of the processes in the technical and natural 
sciences, studying the laws of nature and the connections 
between the natural sciences (especially physics and 
chemistry) lays the foundation for the deterministic way 
of thinking, and according to experience, this almost 
exclusively determines the thinking of young people. 

Stochastic modeling is explicitly present in certain 

specific subjects, such as statistical physics, where it's 
included in high school curricula. However, even when it 
does find its place, it often remains isolated from broader 
educational contexts. In our experience, this leads to 
difficulties in introducing and using stochastic models. As 
a result, in undergraduate engineering courses, we suggest 
introducing the fundamental concepts of stochastic 
modeling at the outset. This approach should be based on 
foundational statistical tools and intuitive understanding. 

One of the key elements of sustainable education is 
the incorporation of key environmental challenges, such 
as climate change, into core subjects like math, science, 
and art [0]. Learning the tools of mathematical analysis is 
essential before delving into a systematic exploration of 
probability theory. Yet, if we strictly insist on the 
superposition of theories when scheduling the topic in the 
curriculum, we encounter the issue that modeling, the 
foundation of engineering mindset, is introduced only 
towards the end of the educational journey, leaving 
insufficient time for skill development. This problem 
related to control theory is discussed in [1].  Our approach 
gives the opportunity to deal with stochastic modelling 
even in high school or at the beginning of the university 
education. 

In the minds of ordinary people, including high school 
students, deterministic thinking is often linked to technical 
sciences, emphasizing precision and clear cause-and-
effect relationships. 

The idea that determinism exists in real systems only 
in the sense that inputs generally exactly determine 
outputs is also not sufficiently emphasized in secondary 
school and university education. 

Indeed, it is accurate that only at a theoretical level, 
within a model, can one determine the output precisely 
through formulas when input values and system 
functioning are known. However, in practical studies of 
real processes, this ideal scenario never materializes. The 
presence of uncertainty stems from various factors, 
including noise in inputs, variability in system parameters, 
and unpredictable circumstances. Additionally, the 
description of the system itself cannot be flawless, 
contributing to the overall uncertainty. 

An input or a parameter of a system is considered 
deterministic or stochastic depending on how its 
variability impacts the variability of the output.  Capturing 
the variability of an output parameter (e.g., a property of a 
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product) is a key task in quality management. Users 
perceive this variability and have objective or subjective 
expectations regarding it. 

For example, if the product quality depends on a raw 
material property or a technological parameter in a 
production process, its continuous sampling and control is 
essential to meet the requirements. In practice, this means 
that we cannot neglect the variability of the given 
parameter, i.e. we must consider it as a random variable. 

The basic concepts of reliability theory and quality 
assurance require the skilled application of the stochastic 
approach. According to interviews with university 
students, even top performing students often struggle to 
comprehend the utility and practical application of 
stochastic models when probability theory and statistics 
are discussed in isolation within mathematics courses. 
Typically, what is learned in mathematical statistics is not 
directly linked to technical systems. For sustainable 
engineering education, it's crucial to bridge this gap by 
reinforcing knowledge in engineering courses. However, 
this often translates into mere repetition of formulas or 
calculation procedures, rather than fostering skillful and 
creative application of probability theory and statistics. 
Our approach differs by integrating concepts with real-
world applications from the outset, thereby ensuring that 
stochastic modeling becomes a vibrant and practical tool 
in the student's mind. 

The stochastic approach does not contradict the 
cause-and-effect relationships assumed in technical 
systems. The random character doesn’t lay in the 
relationships, but rather in the availability of information. 
Uncertainty arises from information gaps; when we lack 
complete information about a system or process, its 
operation and output appear random to us. Moreover, it's 
vital to recognize that the same phenomenon can be 
associated with different levels of uncertainty for different 
observers, contingent on their information about the 
phenomenon. Consequently, this can lead to different 
models of a problem. This concept aligns with conditional 
probability, where the probability of the same event varies 
under different conditions. In calculating conditional 
probability, the condition means what information we 
have about the outcome of the random phenomenon. 

Two ideas are important in teaching stochastic models 
in engineering. First, the exact value of physical quantities 
remains a theoretical value and cannot be determined 
precisely through measurement. This holds true for 
quantities that can vary continuously within an interval; 
while discrete quantities, like the number of pieces, can of 
course be precisely determined. The fact that 
measurements are distorted by noise and cannot be 
unbiased should be a fundamental element of engineering 
thinking. For example, when measuring the weight of an 
object, the theoretical value cannot be pinpointed 
precisely; any mass measurement provides only an 
estimate.  

The "accuracy" of the value provided by a particular 
measurement device can be determined through 
measurement system analysis (Gage R&R). A 
fundamental element of 6 Sigma process development is 
the examination of the adequacy of the measurement 
system. The 6 Sigma process development mindset and 
toolset provide an excellent basis for studying somatic 

modelling and problem solving. The tools of probability 
and especially mathematical statistics can be presented in 
a unified, practical approach. 

The second crucial aspect in teaching stochastic 
models in engineering is clarifying the characteristics and 
role of the model employed for problem-solving in a given 
situation. In physics and engineering education, students 
encounter models that serve as simplifications of real-
world phenomena. It’s imperative for students need to see 
the difference between the model and reality. Usually, 
when discussing the learning material certain circumstan-
ces and relationships are considered "natural" without 
clarifying what kind of simplifications were used and what 
aspects were neglected to get the model. Helping students 
understand these distinctions enhances their ability to 
critically analyze and effectively apply the models in 
practical situations. 

Students need to see that different approaches and 
accuracy requirements lead to different models, and the 
"solutions" to the problems will be different. The 
outcome/result is contingent upon the chosen model, and 
the engineer is responsible for selecting the right model in 
practical applications. In engineering education, we must 
use the principle of gradation to show models from the 
very simple ones to the most complex, linking the different 
theories presented at different levels of education. 

This problem becomes particularly evident when 
engineering tasks are analysed using design and simula-
tion software. These tools provide some sort of solution, 
but it may not always align with reality or provide accepta-
ble solution to the engineering problem. A comprehensive 
and sustainable engineering education equip students with 
the necessary competencies to overcome the typical 
problem of evaluating the results of a finite element 
simulation. The result of the simulation can be very 
sensitive to the model parameters used during the 
procedure, so great care must be taken when using the 
result. 

The relationship between input and output can be 
interpreted in a given model. Obviously, this relationship 
is governed by natural laws, but we can only describe it 
within models formulated with specific assumptions. 
Therefore, not only the value of the quantities, but also the 
description of the relationships is the result of such 
"estimation". 

One of the overarching challenges in traditional 
mathematics education is its focus on calculations within 
mathematical models, often neglecting the broader 
process of problem-solving. Only a small part of this 
process: real problem - physical model - mathematical 
model - mathematical solution - physical solution - 
solution of the real problem is presented in the classroom. 
In the best case, throughout the course of education all 
these elements are discussed, and students develop in time 
all the competencies needed for problem solving.  

However, most students need more than just an 
isolated discussion of problem-solving elements. 
Fortunately, in the last decades, there has been an 
expansion in the methodology of mathematics education 
to include modeling, both in academic literature and 
practical applications but the examples are mainly related 
to the deterministic approaches. Currently, Hungarian 
secondary schools introduce basic statistical concepts, but 



JOURNAL OF SUSTAINABLE ENERGY VOL. 15, NO. 1, JUNE, 2024 

ISSN 2067-5534 © 2024 JSE  27 

fail to explore models where these concepts could be 
naturally applied. Thus, statistical knowledge, like many 
other subjects, is treated as a mere item on the curriculum 
to be learned, without students understanding its real-
world applications. and generating a sort of frustration that 
leads to a depletion of students’ energy for learning. For a 
sustainable education, the energy invested into learning 
should turn into actual development and so, new 
motivational energy is generated [2]. 

 
 

2. LITERATURE REVIEW 
 

The role and methods of modelling and simulation in 
education are widely discussed in the literature. 

Study [3] proposes the combination of modelling and 
simulation practices along with disciplinary learning as a 
way to synergistically integrate and take advantage of 
computational thinking in engineering education. Based 
on a survey with the participation of 37 experts from 
industry and academia, it also proposes a set of modelling 
and simulation practices, methods, and tools. The study 
identifies and validates a preliminary set of modelling and 
simulation skills, computational thinking practices, and 
associated methods and computational tools needed in 
undergraduate engineering education.  

According to [4] learning mathematical concepts and 
algorithms in engineering education requires solving 
problems in projects as well as to communicating and 
presenting mathematical content. Any system can be 
described by a mathematical model, and the models can be 
applied in practice because the computers allow us to solve 
symbolically and also numerically from different design 
and performance. The computational oriented 
mathematics education in virtual learning environments 
has led to new possibilities for engineering work in which 
mathematically complex problems solved on the computer 
by visualization and simulation play a central role. 

Article [5] focuses on a laboratory class in which 
students are proposed to perform mathematical modelling 
of a production process, considering it as a Markov 
process, based on Kolmogorov equations. Students are 
asked to implement the theoretical solution of the model 
for specific numerical data and to perform computer 
modelling of the process of searching for the limiting 
probabilities of system states using the authors' virtual 
laboratory complex. 

In the context of active innovative changes taking 
place in science and technology, an engineer is required to 
have integrative creative skills, readiness to carry out 
multifunctional research activities based on mathematical 
and computer modelling with the use of digital tools. The 
process of scientific and technological development based 
on modelling requires the improvement of mathematical 
foundations that allow: modelling, developing algorithms, 
using the computer technology apparatus, evaluating the 
reliability of models in quantitative estimation, analysis 
and optimization. All this means that the teaching of 
mathematical modelling, based on the integration of 
mathematical and applied sciences in combination with 
information technology, is a current trend in the 
development of modern engineering education. 

Paper [6] reports on an interview study of 

mathematical modelling activities involving nine 
professional modelers.  

The research question was How can mathematical 
modelling by professional mathematical modelers be 
characterized? The analysis of our interview data, inspired 
by the coding procedure of grounded theory, led us to 
describe three main types of modelling activities as a 
characterization of mathematical modelling as a 
professional task. In data-generated modelling, models are 
developed primarily from quantitative data with little or 
no assumed knowledge of the system being modelled, 
while in theory-generated modelling, models are 
developed based on established theory. In the third 
activity, model-generated modelling, the development of 
new models is based on established models.  

The importance of the statistical sciences in modern 
engineering is obvious, but not necessarily its many roles. 
The role of technology in statistics education is also 
diverse and needs to be considered in the context of the 
student and the course. [7] considers engineering statistics 
education and where and how statistical technology can 
facilitate students' conceptual structure, statistical 
reasoning, and confidence. 

From regression to experimental design, from SPC to 
MCMC and large data sets, from reliability to queuing, 
from risk analysis to time series and image analysis, every 
engineering context/field touches on some aspects of 
statistical thinking and techniques. Data and variability are 
inherent in engineering problems, both real and 
theoretical. Because of the diversity of statistical needs in 
engineering, students need an introduction to statistical 
thinking, concepts, and techniques that they can use 
immediately in real-world contexts, and a coherent and 
logical progression that optimizes understanding at this 
stage and provides a foundation for ongoing learning. 

Engineering strives to "sort out messes" and "pin 
things down" to create products with purpose, whether 
tangible, systemic, or conceptual. Engineering students 
are not yet engineers - an aspect that unfortunately seems 
to be overlooked in engineering education more than in 
many other disciplines. [7] 

The theme of the work presented in [8] is about 
experimentation in the classroom using modelling of real 
phenomena and/or simulation in higher education. The 
idea is to rethink mathematical modelling as a didactic 
strategy aimed at developing not only disciplinary but also 
transversal competences. A theoretical proposal of how 
we conceive Mathematical Modelling and methodological 
proposals are presented along with elements to consider 
these processes in the classroom. 

 
 

3. COMPETENCY DEVELOPMENT WITH 
MONTE CARLO SIMULATION PROJECTS 
 

In our opinion and experience, Monte Carlo 
simulation (MCs) is best suited for a basic introduction to 
the stochastic approach, offering a sustainable education 
to future engineers. In this article, we present the elements 
of our method. The ideas can be applied at different levels 
of complexity, from high school to bachelor's and master's 
courses. 
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3.1. Knowledge elements required for the projects 
 

The method uses the ideas and tools of project-based 
learning. Another example of the project-based approach 
used in the Technical diagnostics course at the Faculty of 
Engineering of the University of Debrecen is presented in 
9. 

The basic tools of statistics can be presented in MCs 
projects. Thus, the concepts introduced are linked to 

concrete processes and are accepted as practical things, not 
only as theoretical considerations. This is the main 
motivation of the method. 

At the high school level, the key concept is the 
relative frequency histogram. It is easy to understand and 
is based on data collected through simple observations or 
measurements. 

Table 1 shows the concepts to be introduced at high 
school and university level, respectively. 

 
Table 1. Knowledge elements required in MCs projects at high school and university level 

secondary school level university level 
probability (relative frequency approach) probability theory basics 
random variable (intuitive concept) random variable 

cumulative distribution function 
probability mass function 
probability density function 
discrete and continuous models 

sample sample, sampling methods 
descriptive statistics (mean, standard deviation, 
median, quartiles, box plot) 
relative frequency histogram 

descriptive statistics (mean, standard deviation, median, 
quartiles, box plot) 
relative frequency histogram 

 model fitting (probability plot, goodness-of-fit testing, 
chi-square test) 
confidence intervals, hypothesis testing 

 
3.2. Steps of the classroom projects 
 

Step 1: Choose a system or process that can be 
analysed using the MCs method. Preferably it is a 
technical or business system or process but in the course 
project it can also be any process from the everyday life. 

Step 2: Understand the operation of the system or 
process under investigation (e.g. a production process) in 
general. It is required to choose a system or process that 
the team members can really understand; a project topic is 
acceptable if the team members are familiar with it. 
Therefore, an example from their professional studies or 
experience is the best choice. 

Step 3: Define the (numerical) output(s) you want to 
study (e.g. production time needed to produce a certain 
number of products). Only a numerical output that can be 
correctly determined by the team members is acceptable.  

Step 4: Identify the relevant system or process 
elements, parameters, and data, furthermore the links to 
the output. Based on the understanding of the system, it is 
recommended to prepare a flow chart with the relevant 
elements. It is useful when explaining the project to the 
class in the presentation. 

Step 5: Identify the inputs that determine the output 
and give the relationship between them. Students need to 
identify the inputs they want to use in the simulation. To 
do this, they must consider all the system inputs that affect 
the output and classify them as given (deterministic) or 
random (stochastic). Finally, they must reduce the number 
of inputs to a manageable level. The course project must 
use at least five different types of random input data 
(quantities). 

Step 6: Take a sample for all random inputs. The data 
source can be a measurement, observation, or any database 
on the Internet. In the classroom project it is also 
acceptable to use assumed data. 

Step 7: Generate a relative frequency histogram 

and/or fit a model for all random inputs, if possible. In 
general, the output sample does not show any particular 
characteristic, in which case the relative frequency 
histogram is used to generate random numbers rather than 
a fitted model. If relevant data are not available, the 
distribution can be assumed to be known (chosen by the 
students) in the course projects. 

Step 8: Generate a large number of random inputs 
(>1000) and calculate the outputs. Students must study 
the use of the random generation tools in any software. 
Any software can be used, but the presentation must 
explain the details of the application and demonstrate the 
results provided by the software. 

Step 9: Analyse the output sample statistically, 
mainly using the tools of descriptive statistics, e.g. the 
relative frequency histogram. Based on the output sample, 
the students have to answer some questions posed by 
themselves or by the teacher about some probabilities, 
confidence intervals or statistical tests (e.g. state the 
probability that the production time needed to produce a 
given number of products does not exceed a given time). 

Step 10: Present the results to your peers and 
answer their questions about the details of the project. 
 
3.3. Educational goals and benefits of the projects 

 
In our method, there are a variety of pedagogical 

objectives due to the application of MCs. Actually, it is not 
among the main topic of the course, but this application is 
approved to be the optimal way to repeat or relearn the 
basic concepts and essential ideas of stochastic modeling. 
Table 2 shows the educational objectives related to the 
different activities. 

In Step 1 the topic of the project was intentionally left 
unspecified, only sample case studies were presented. It is 
a good way to check the understanding of the theoretical 



JOURNAL OF SUSTAINABLE ENERGY VOL. 15, NO. 1, JUNE, 2024 

ISSN 2067-5534 © 2024 JSE  29 

concepts to ask students to find a system / process that can 
be analyzed with MCs. In this step, we want students to 
use their creativity to find interesting topics that are 
suitable for a MCs. 

Since a process approach is important for engineers, 
for example in process improvement projects, studying the 
operation of processes in the context of Steps 2-5 is a 
beneficial activity for the students. 

Steps 6-7 are applications of statistical methods. In 
many cases, statistics is taught more theoretically, and the 
applications are demonstrated through examples with 
prepared data (sample). A useful extension of the study of 

statistics is to follow a process from data acquisition to 
model fitting. Students need to see the role and importance 
of these steps when using MCs. In practice, the usability 
of the analysis depends largely on the quality of the model 
fit to the random inputs and, ultimately, on the sampling 
method (data collection). At this point, a key topic in 
statistics, the sampling method and the concept of 
representativeness, can be discussed. 

At the high school level, students can carry out a 
project, for example, on the sales in the school cafeteria, 
characterizing the customers and determining the 
distribution of the number of different types of customers. 

 
Table 2. Educational goals linked to the different activities 

Activity Educational goal 
Choosing a system / process to be analyzed. Students must understand which type of systems / processes 

can be analyzed with MCs and distinguish description and 
simulation of systems.  

Identifying the output and the relevant constant 
(fixed) and random system parameters and inputs. 

Students must understand the steps and the connections 
among them. A systemic approach is required. 

Data acquisition Planning and conducting sampling process. 
Search for relevant data on the internet, use of databases. 

Data presentation, creating frequency histograms Use of the concepts of descriptive statistics. 
Model fitting Use of goodness of fit tests (e.g. probability plot or 𝜒ଶ test)  
Generating random inputs Learning software providing random number generation 

and analysis of a large number of cases (e.g. MS Excel) 
Analysis of the sample for the output Students must understand what kind of information and how 

can be gained from a sample 
Presentation Checking the understanding and the presentation skills. 

Encourage the communication and critical thinking in 
groups. 

 
Steps 9-10 can be used to practice drawing 

conclusions. The nature and use of results are very 
different in deterministic and stochastic models. Besides 
understanding the idea of MCs (where and how to use 
them), the other key step is the statistical analysis of the 
output sample. 

Although the questions to be answered must be 
defined during the planning of the simulation, new 
questions may arise when looking at the results of the 
statistical analysis of the output. The simulation makes 
sense if we can use it to answer meaningful business 
questions. 

A typical problem in practice is that statistical 
methods are not used for their intended purpose. During 
the presentation of the results, it can be discussed which 
questions are useful to answer in the case of the examined 
process. 

 
 

4. SAMPLE PROJECTS AND THE 
EDUCATIONAL EXPERIMENT 
 
4.1. Sample projects 
 

At the beginning of the Reliability chapter, a few case 
studies are presented as an introduction to the ideas and 
steps of simulation. Some examples are given below. 

 
P1 – Net energy consumption of a building equipped 

with a solar system 

A building is supplied with electrical energy from the 
grid and from a solar system. For simplicity, assume that 
all systems in the building are supplied with electrical 
energy (e.g., heating, cooling, air conditioning). 
Electricity is drawn from the grid when the solar system is 
unable to meet the current demand. And if the solar 
system's output is greater than the demand, the excess 
energy is fed back into the grid. 

Fix the technical parameters of the solar system 
calculate the electricity production of the solar system 
using the number and distribution of sunshine hours and 
other random temperature and weather conditions on a 
daily basis for a year. Calculate the electricity demand of 
the building using the number of people living in the 
building, their living habits, and weather conditions on a 
daily basis for one year. Determine the net electricity 
demand for one year. 

 
P2 – Bike rental system capacity 
As part of a sustainability program, a bicycle rental 

network has been set up in a city. The network is 
characterized by the time needed to cover the distance 
between stations. In the project it is acceptable to calculate 
with 4 stations (S1,…,S4). 

Assume that initially there are 10 bicycles available at 
each station. 

Use MCs to analyze the operation of the bike rental 
system statistically. 

Assume that the time taken to travel between stations 
is normally distributed with the mean and standard 
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deviation given in Tables 3 and 4. 
 

Table 3. Mean of the trip time between the stations (in 
minutes) 

 S1 S2 S3 S4 
S1 - 12 23 9 
S2 - - 18 14 
S3 - - - 16 
S4 - - - - 

 
Table 4. Standard deviation of the trip time between 
the stations (in minutes) 

 S1 S2 S3 S4 
S1 - 4.2 6.1 3.3 
S2 - - 2.6 3.7 
S3 - - - 4.9 
S4 - - - - 

 
Suppose that the time between to desired stating time 

follows exponential distribution with 𝜆 = 6 min.  
The probability that the next desired trip is from Start 

Station 𝑆𝑆𝑖 to End Station 𝐸𝑆𝑗 is given in Table 5. 
 

Table 5. Probability of trips as a next desired trip 
 ES1 ES2 ES3 ES4 
SS1 - 0.06 0.05 0.08 
SS2 0.09 - 0.04 0.12 
SS3 0.15 0.11 - 0.10 
SS4 0.07 0.12 0.08 - 

 
Instructions: Generate the demand for bikes by 

selecting a random trip with start and end station and the 
desired time of departure. Generate the time for each trip 
requested. Check if a bike is available at the start station. 
If not, the customer will have to wait until one is available.  
Simulate the process for a period of 8 hours. Calculate the 
number of trips made, the total time of the trips and the 
utilization of the network. 

 
P3 – Travel time from home to the faculty by bike 
In order to decide to buy and use a bicycle to travel 

from home to the faculty, a student needs to know the 
statistical parameters of the travel time. 

The route is given with the number of traffic lights, 
the probability that the cyclist has to stop at the traffic 
lights and the waiting times as random variables.  

The travel times between the traffic lights in normal 
conditions are given as random variables. These times are 
influenced by the weather conditions and the current 
fitness of the rider. 

Suppose that there are 6 traffic lights (TL1,..,TL6) on 
the route. The probability that the cyclist has to stop at the 
traffic lights is given in Table 6. 

 
Table 6. The probability that the cyclist has to stop at 
the traffic lights 

traffic light TL1 TL2 TL3 TL4 TL5 TL6 
probability 0.41 0.22 0.65 0.33 0.15 0.18 

 
The waiting times are exponentially distributed 

random variables with parameters given in Table 7. 
 

Table 7. The parameters of the waiting times at the 
traffic lights (minutes) 

traffic light TL1 TL2 TL3 TL4 TL5 TL6 
parameter 𝜆 1.2 3.5 2.8 3.6 2.2 1.8 

 
The travel times between the traffic lights are 

supposed to be normally distributed random variables with 
the mean and standard deviation given in Tables 8 and 9. 

 
Table 8. Mean of the travel time between the traffic 
lights (minutes) 
 TL1

TL2 
TL2
TL3 

TL3
TL4 

TL4
TL5 

TL5
TL6 

mean 8.6 10.3 5.1 4.4 6.7 
 

Table 9. Standard deviation of the travel time between 
the traffic lights (minutes) 
 TL1

TL2 
TL2
TL3 

TL3
TL4 

TL4
TL5 

TL5
TL6 

std 1.5 3.1 0.8 1.0 1.9 
 
The weather conditions and the current fitness of the 

rider are taken into account with the factors given in 
Tables 10 and 11, the ride time values must be multiplied 
by these coefficients. 

Weather conditions include sunshine 
(sunny/cloudy/rainy), temperature (high/normal/low) and 
wind (headwind/no wind/tailwind). As there are 27 cases, 
in order to save space, only the structure of the table is 
shown in Table 10. with the heading and one row. 

 
Table 10. Weather categories and the related 
probabilities and coefficients (only demonstration) 

sunshine 
/rain 

temp. wind coefficient probability 

sunny high tailwind 1.5 0.04 
 

Table 11. Fitness categories and the related coefficients 
 fit normal exhausted feeling sick 

coefficient 1.3 1.0 0.8 0.6 
 
Use MCs to analyze the time taken to reach the faculty 

statistically. 
Instructions: Generate the random values of the 

logical variables “Stop at 𝑇𝐿𝑖”, 𝑖 = 1, … ,6 and the waiting 
time values at the traffic lights, furthermore the riding 
times between the traffic lights. 

Generate random weather and fitness conditions and 
multiply the riding time values with the relevant 
coefficients. 

Estimate the probability that the travel time is less 
than 35 minutes. 

 
P4 – Operation time of a production line 
In a manufacturing process, the length of the 

operating and repair time periods is modeled with an 
exponential distribution with a mean of 48 minutes and 13 
minutes, respectively. 

Use MCs to analyze the total operating time during an 
8-hour shift statistically. Estimate the probability that it is 
not less than 7 hours.  

Instructions: Generate a sequence of random 
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operating and repair time values for an 8-hour period and 
sum the operating time values. Repeat this 1000 times to 
obtain a sample of the total operating time per shift. 

 
P5 – Batch manufacturing time in a one-piece flow 
10 products need to be produced on a production line. 

There are 6 workstations on the line. The time needed to 
complete the specific manipulation follows a normal 
distribution with the mean and standard deviation given in 
the Table 12. 

 
Table 12. The mean and the standard deviation of the 
time frame required for the operations (minutes) 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 
𝜇 4.8 2.2 3.6 5.0 7.6 4.4 
𝜎 0.8 0.2 0.5 0.4 1.0 0.7 

 
Constrain: Step 𝑖 + 1 can start for Workpiece 𝑗 if 
 Step 𝑖 has been completed for Workpiece 𝑗, 
 Step 𝑖 + 1 has been completed for Workpiece 𝑗 −

1. 
In one-piece flow processes, it is obvious that pieces 

occasionally must wait for the next step. 
Use MCs to analyze the total time required to 

complete the 6 products statistically.  Estimate the 
probability that the total time will not exceed 2 hours.  

Instructions: Generate a sequence of random time 
values for all steps and parts. Use the constraint to 
determine the start time of the steps for all parts. (From 
these values, the wait time values are obtained by simple 
subtraction.) Calculate the total time required to complete 
all steps for all workpieces. Repeat this 1000 times to get 
a sample of the total time. 

 
P6 – Supermarket inventory 
Inventory of 3 goods G1, G2, and G3 in a supermarket 

is analyzed, the initial stock of these goods (at the 
beginning of the week) are 3000, 2500 and 200, 
respectively. 

There are 4 types of customers (T1,…,T4) that are 
characterized by the likelihood that they will purchase the 
different types of goods when visiting the supermarket, 
according to Table 13. 

 
Table 13. Characterization of the customers 

 G1 G2 G3 
T1 0 0.6 0.8 
T2 0.5 0.5 0.3 
T3 0.8 0 0.3 
T4 0.6 1 0.6 

 
Assuming that the number of customers follows a 

normal distribution, the mean and standard deviation are 
shown separately for different types of customers and 
different days of the week in Table 14 and Table 15, 

respectively. 
 

Table 14. Mean of the number of customers 
𝜇 T1 T2 T3 T4 

Mo 250 240 150 140 

Tu 280 220 200 170 

We 320 310 230 230 

Th 550 520 350 200 

Fr 400 380 340 260 

Sa 230 120 270 100 

Su 200 120 190 100 
Table 15. Standard deviation of the number of 
customers 

𝜎 T1 T2 T3 T4 

Mo 40 30 20 20 

Tu 40 30 20 30 

We 30 30 30 30 

Th 30 40 30 20 

Fr 30 20 30 10 

Sa 30 20 20 10 

Su 30 20 10 10 
 
The stock is replenished by daily transports of the 

three types of goods. The quantity of goods transported 
occasionally and the probability of transporting of the 
different goods on the different days of a week are given 
in Table 16.  The transported quantity of goods of G1, G2, 
and G3 are 800, 1000 and 1500 per transport, respectively. 

 
Table 16. The probability of the transport of the 
different goods on different days 

 G1 G2 G3 

Mo 0.5 0 0.9 

Tu 0.8 1 0.5 

We 0.7 0.6 0.7 

Th 0.4 0.8 0.8 

Fr 0 1 0.4 

Sa 0.5 0.5 0 

Su 0.2 0.5 0.6 
 
Use MCs to analyze the inventory at the end of the 

week statistically. 
Estimate the probability that the stock of Good 1 is 

less than 2600. 
Estimate the probability that the end-of-the-week 

inventory of all goods is less than 80% of the initial 
inventory. 
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Fig. 1. A frequency histogram of the G1 stock at the end of the week 

 
4.2. The educational experiment 

 
The MCs projects were introduced more than five 

years ago; with the educational experiment detailed in this 
paper conducted during the fall semester of 2023. The 
experiment involved 60 students majoring in Engineering 
Management, comprising 20 Hungarian students and 40 
foreign students enrolled in the faculty international 
program. 

The initial 7 weeks of the subject "Risk and 
Reliability" are dedicated to risk management, while the 
subsequent 7 weeks focuses on reliability theory and its 
applications. In the practical classes of the reliability part, 
students engage in several projects, one of which is the 
MCs. This project is designed to be easily comprehensive 
yet complex enough to serve as a suitable project task. 
Students have the option to work individually or in teams 
of maximum 3 members. 

 
 

5.  RESULTS AND CONCLUSIONS 
 

The research methodology involves analyzing 
numerical data derived from students' projects, primarily 
focusing on the time required for various steps. 
Additionally, informal interviews are conducted with the 
students to gather their experiences and insights. These 
findings are then synthesized and correlated with the main 
steps of the project, allowing for a comprehensive 
understanding of the students' experiences and 
conclusions. By linking the data analysis and interviews to 
the project's main steps, the research provides valuable 
insights into the challenges and successes encountered by 
students throughout the project lifecycle.  

 
Step 1 
Our observations in the experiment show that Step 1 

is crucial for the success of the course projects. For some 
students, it was very difficult to understand the purpose of 
MCs and the situations in which this tool can be used 
effectively. Many of them could not differentiate between 
cases where data are available for direct statistical analysis 
and cases where random inputs are used to generate a 
sample for analysis. Several students attempted to apply 
probability rules, such as decision trees, to calculate some 
probabilities. 

Similar challenges were observed across both 
Hungarian and foreign student groups, highlighting a 

common issue for many areas of engineering education: a 
significant disparity between students' existing knowledge 
(based on preliminary studies) and attitudes towards 
stochastic modeling, and the proficiency level required for 
the course.  

This step requires creativity, and unfortunately, our 
observation revealed that the creativity of Hungarian 
students was generally low, and their average was much 
lower than that of foreign students. Specifically, when it 
came to identifying novel (not typical) project topics, the 
creativity of the foreign students (referred to as ‘EN’) 
surpassed that of the Hungarian ones ('HU') and may be 
characterized with the following data (estimation).  
Approximately 
 EN-15%/HU-5% presented a very imaginative idea 

and do unique calculations (e.g. lap time in Formula 
1 racing which depends on weather, human and 
technical circumstances). 

 EN-55%/HU-45% worked out a common topic with 
significant modifications (e.g. revenue of a café or 
hotel per year, production or construction time, 
energy demand of a building)  

 EN-30%-HU50% simply used an example discussed 
in the classroom or found on the internet and only the 
name of the elements and the data are changed. 

Success in Step 1 is measured by the time needed to 
identify an acceptable project topic. The idea and goal of 
the MCs were repeated until all students could understand 
the task. In the experiment, the maximum time needed to 
understand the basic ideas was 4 weeks. Table 17 shows 
the time values in the group of Hungarian and the foreign 
students. 

 
Table 17 Project topic generation time 

Time 
(week) 

Hungarian 
students 

(out of 20; %) 

Foreign 
students 

(out of 40; %) 
1 2 ; 10% 8 ; 20% 
2 3 ; 15% 16 ; 40% 
3 10; 50% 13 ; 32.5% 
4 5 ; 25% 3 ; 7.5% 

average 
time 

2.9 weeks 2.275 weeks 

 
 
This research has shown that student-prepared 

simulations should be used more frequently in engineering 
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education to shape engineering thinking. The effect of 
prepared examples is much lower. 

 
Step 2 
Once students understood the basic ideas and goal of 

MCs and successfully completed Step 1, they encountered 
no significant obstacles in analysing their chosen systems. 
In fact, some of them opted for overly simplistic systems 
or processes, so they were asked to enhance the 
complexity of their project. 

 
Steps 3-5 
Understanding the goal of the simulation included 

understanding the numerical output. About a third of the 
students wanted to use probability or categories as output. 
It was time consuming to explain to these students why 
their approach was wrong. Some students chose systems 
or processes that were too complex (too many inputs or 
parameters) so that they could not calculate the output. 
Simplification was recommended in these cases. The 
preparation of a flow chart seemed to be useful to give an 
overview of the systems or processes studied. 

 
Steps 6-7 
Although the use of real data was not required, about 

20% of the students collected data and used the frequency 
histogram or fitted model to generate the random inputs. 
Most of them used historical financial or weather data (e.g. 
stock prices or interest rates). Observation was used, for 
example, when the project was the analysis of "Living 
costs of students supported by Stipendium Hungaricum in 
Debrecen". 

 
Step 8 
MS Excel (random number generation and “what-if 

analysis”) was used by most students, some students used 
Matlab, MINITAB, SPSS, @risk or other software. 

 
Step 9 
The statistical analysis of the output sample was 

important both from a mathematical and professional 
point of view. About 90% used only descriptive statistics, 
calculated mean, standard deviation, quartiles, prepared 
relative frequency histogram and estimated some 
probabilities related to the output quantity. Three quarters 
of the students found the simulation a useful tool and 
decided to use it later in their studies (e.g. thesis). 

 
Step 10 
Presentations to the class proved to be beneficial for 

several reasons. Firstly, they facilitated easy evaluation of 
the students’ work. Secondly, they provided an 
opportunity for students to enhance their presentation 
skills. Thirdly, presentations allowed students to share 
their ideas regarding the challenges encountered during 

the project, as well as their findings and results. 
 
As a general conclusion, this research underscores the 

importance of integrating student-prepared simulations, 
such as MCs, into engineering education to cultivate 
critical thinking and problem-solving skills. Furthermore, 
it highlights the need for ongoing support and guidance to 
address challenges and ensure student success throughout 
the project lifecycle. The collaborative sharing of 
experiences fostered a richer learning environment and 
encouraged peer-to-peer support and knowledge 
exchange. Overall, class presentations served as a valuable 
component of the learning process, promoting both 
academic and interpersonal skills development. 
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