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Abstract - Maintaining power quality in modern power 
systems is crucial, as the integration of renewable 
energy sources and the rise of non-linear loads have 
resulted in intricate harmonic distortions. Ordinary 
methods based on Fourier series, like the Fast Fourier 
Transform (FFT), are frequently used for harmonic 
analysis; however, they often struggle to accurately 
analyze non-stationary signals, which are commonly 
observed due to system disturbances and variations. 
This research investigates the Multiple Signal 
Classification (MUSIC) algorithm as a more advanced 
option for harmonic analysis in power systems. The 
high-resolution frequency estimation provided by 
MUSIC allows for precise identification of harmonic 
amplitudes and phases, even in the presence of noise 
and fluctuations in the fundamental frequency. In this 
study, synthetic non-stationary waveforms that 
simulate actual conditions at the Point of Common 
Coupling (PCC) are examined to demonstrate 
MUSIC's capability to identify harmonics accurately 
where traditional FFT-based methods fail. Findings 
from simulations indicate that MUSIC not only 
provides enhanced accuracy in harmonic 
characterization but also exhibits resilience under non-
stationary conditions, making it particularly effective 
for real-time power quality monitoring. This research 
emphasizes MUSIC as an important progress in 
harmonic analysis, presenting a valuable resource for 
enhancing power system reliability in dynamic settings. 
 
Keywords: Power quality, Harmonic analysis, MUSIC 
algorithm, Fast Furrier Transform, Signal processing, 
Time-varying systems   
 
 
1. INTRODUCTION 
 
1.1. Background 

 
Harmonics in electrical power systems originate from 

multiple sources, including non-linear loads, power 
electronic converters such as inverters and rectifiers, as 
well as a range of contemporary electrical appliances. 
These harmonics lead to serious problems, such as 
equipment overheating, heightened losses in power 
transmission and distribution, incorrect functioning of 
protective relays, and disruptions to communication 

systems. As renewable energy sources become more 
integrated and advanced electronic devices are used more 
widely, the demand for efficient power quality 
management and harmonic distortion reduction is 
becoming increasingly critical. Power systems are 
encountering greater complexity when it comes to 
sustaining stability and performance as levels of harmonic 
distortion rise [1-2]. Recent studies indicate that escalating 
harmonic distortion levels, influenced by modern energy 
technologies such as solar photovoltaic systems, electric 
vehicle chargers, and wind energy conversion systems, 
present further challenges for ensuring grid stability [3]. 
Harmonic distortion can disrupt protection systems and 
control algorithms, requiring sophisticated detection and 
mitigation techniques to maintain the integrity of the power 
grid [4]. 

 
1.2. Literature Review 

 
Conventional techniques, like the Fast-Fourier-

Transform (FFT), have been widely adopted to 
characterize harmonics due to their ease of use. FFT is a 
popular method for analyzing frequency components in 
signals, including harmonics in power systems. However, 
FFT has certain limitations, especially when dealing with 
non-stationary signals or closely spaced harmonic 
frequencies [5]. These limitations often result in inaccurate 
harmonic characterization, which can hinder the 
effectiveness of mitigation techniques. 
An alternative to FFT, the Multiple Signal Classification 
(MUSIC) algorithm, originally developed for radar and 
sonar applications, has been shown to offer high-resolution 
frequency estimation [6]. MUSIC effectively separates 
signals into signal and noise subspaces, making it capable 
of identifying and quantifying harmonic components even 
in noisy or non-stationary conditions [7]. 
Research studies have demonstrated the superiority of the 
MUSIC algorithm for harmonic identification and 
characterization in both steady-state and transient 
conditions [8]. It has shown particular effectiveness in 
power quality monitoring applications, where it 
outperforms conventional techniques in dynamic and time-
varying power systems [9]. The algorithm's ability to 
handle noisy signals while providing accurate harmonic 
detection makes it a suitable choice for modern power 
systems with complex harmonic behaviors. 
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While the Fast-Fourier-Transform (FFT) is the most 
commonly used technique for harmonic analysis, 
alternative approaches such as Wavelet Transform, 
Estimation of Signal Parameters via Rotational Invariance 
Techniques (ESPRIT), and Singular Value Decomposition 
(SVD) have also been applied in power system harmonic 
characterization. 
 

a) Wavelet Transform (WT) 
 

Wavelet-based techniques provide time-frequency 
resolution, making them suitable for analyzing transient 
signals and non-stationary waveforms. However, WT 
suffers from a lack of precision in frequency resolution, 
particularly when dealing with harmonics that are closely 
spaced. Additionally, selecting the optimal mother wavelet 
and scales can be computationally intensive, and 
performance can degrade in noisy conditions [10]. 
 

b) Estimation of Signal Parameters via 
Rotational Invariance Techniques  
(ESPRIT) 

 
ESPRIT is a subspace-based algorithm, similar to 

MUSIC, used for frequency estimation. While ESPRIT can 
provide high-resolution estimation with lower 
computational complexity, it assumes that the number of 
harmonics is known a priori. This limitation can be 
problematic when harmonic orders vary dynamically, 
leading to inaccurate results. Moreover, ESPRIT's 
performance in noisy environments is generally inferior to 
MUSIC [11]. 
 

c) Singular Value Decomposition (SVD) 
 

SVD is often used for signal decomposition and noise 
reduction, particularly in the presence of higher noise 
levels. However, SVD is sensitive to signal scaling and 
cannot directly provide frequency information without 
additional computational steps. In comparison, MUSIC 
offers direct frequency estimation and better noise 
robustness, especially in dynamic conditions [12]. 
Despite their advantages, these methods face limitations in 
the precision and accuracy of harmonic estimation, 
especially in noisy and dynamic environments. In contrast, 
the MUSIC algorithm excels in separating signal from 
noise subspaces, making it more effective for harmonic 
detection and characterization in modern power systems. 
MUSIC has demonstrated superior performance in 
identifying closely spaced harmonic frequencies and can 
operate effectively even in highly noisy conditions, making 
it a strong candidate for power quality monitoring in the 
presence of renewable energy resources [13]. 
 
1.3. Research Gap and Motivation 
 
  The transition to renewable energy sources in power 
systems introduces complexities related to power quality, 
particularly in terms of harmonics generated by non-linear 
loads and inverter-based resources. Existing harmonic 
analysis techniques often fall short in accurately detecting 
and quantifying these harmonics in real-time, especially 

under fluctuating conditions common in operational power 
grids [14]. 
While several methods, such as Fourier Transform and 
wavelet analysis, have been widely used for harmonic 
detection, they lack the resolution and adaptability required 
for modern grid environments that experience intermittent 
energy generation and dynamic load variations.  
The MUSIC (Multiple Signal Classification) algorithm 
presents a promising alternative due to its high-resolution 
capabilities in estimating the frequency content of signals. 
However, its application in power systems, particularly for 
harmonic analysis in environments with significant 
renewable integration, remains underexplored. The 
motivation for this research stems from the necessity to 
validate and enhance the applicability of the MUSIC 
algorithm in dynamic power system environments, thus 
addressing the pressing need for robust, real-time harmonic 
monitoring solutions [15]. 
 
1.4. Challenge 
 
  The primary challenge addressed in this research is the 
accurate characterization of harmonics in non-stationary 
environments, such as those observed in power systems 
integrating renewable energy sources. Conventional 
techniques like FFT struggle to differentiate between 
closely spaced harmonic frequencies and perform poorly in 
noisy conditions [16]. The complexity of modern power 
systems, with their dynamic and time-varying nature, 
exacerbates this issue. Furthermore, the increasing number 
of power electronics and inverter-based resources creates 
additional harmonic distortion, requiring more precise and 
effective analytical methods to ensure the stability and 
reliability of the power grid [17]. 
 
1.5. Contribution 

 
 This paper presents a novel application of the MUSIC 

algorithm for high-resolution harmonic analysis in power 
systems, with a focus on non-stationary synthetic 
waveforms representing realistic conditions at the Point of 
Common Coupling (PCC). The key contribution lies in 
demonstrating the algorithm's superior accuracy and 
resolution in harmonic characterization, significantly 
outperforming conventional methods like FFT. This work 
not only expands the understanding of the MUSIC 
algorithm's efficacy in noisy and dynamic power system 
environments but also underscores its potential to enhance 
power quality monitoring and mitigation strategies critical 
to modern grids. Additionally, this study establishes a 
robust framework for further research, pinpointing 
strategic areas for future exploration. By advancing 
harmonic analysis methodologies, this research supports 
the evolution of more reliable and efficient power quality 
monitoring systems, essential for the effective integration 
of renewable energy sources into power grids. [18-19].  

 
1.6. Paper Organization 

 
 The remainder of this paper is structured as follows: 

Section 2 presents the methodology, detailing the steps 
involved in generating a realistic synthetic dataset and the 
mathematical formulation of the MUSIC algorithm. 
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Section 3 presents the simulation results, where the 
effectiveness of the algorithm is demonstrated through 
various case studies. Section 4 discusses the results, 
emphasizing the advantages of the MUSIC algorithm over 
conventional techniques. Finally, Section 5 concludes the 
paper by summarizing the key findings and suggesting 
future research directions for enhancing harmonic analysis 
in power systems. 

 
 

2. METHODOLOGY 
 
2.1. Synthetic Data Generation 

 
The development and evaluation of harmonic analysis 

techniques is significantly hindered by the lack of publicly 
available datasets containing power systems waveforms. In 
order to solve this problem, we created synthetic 
waveforms that replicated the characteristics commonly 
seen at the point of common coupling (PCC) in power 
systems and simulation outputs from software like 
Simulink. By using these synthetic waveforms as 
substitutes for actual waveforms, we are able to thoroughly 
test our suggested approach. The synthetic 
dataset replicates a range of operation modes and transient 
events. To mimic the complexity seen in real power 
systems waveforms, harmonic components are introduced 
to each waveform with various amplitudes and phases. 

 
2.1.1. Fourier series Representation of Power System 
Waveforms 

 
 The Fourier series representation is a mathematical 

technique used to decompose periodic signals into their 
constituent sinusoidal components or harmonics. In power 
systems, waveforms are typically complex signals 
containing both the fundamental frequency and harmonics. 
Accurately understanding the amplitude and phase of each 
harmonic is essential for modeling and analyzing 
waveform behavior. The Fourier series representation of a 
power system waveform x(t) can be expressed as: [20] 

 
𝑥(𝑡) = 𝐴଴ +  ∑ 𝐴௞sin (2𝜋𝑘𝑓௙௨௡ௗ𝑡 + ϕ௞)ே

௞ୀଵ          (2.1) 
 

Where  𝑓௙௨௡ௗ  is the fundamental frequency of the 
signal, 𝐴௞   and ϕ௞  are the amplitude and phase of the k-th 
harmonic component, N is the highest harmonic number 
considered, and 𝐴଴  represents the DC component. Using 
trigonometric identities, the expression given in equation 
(2.1) can be rewritten as: 
 
𝑥(𝑡) = 𝐴଴ +  ∑ [𝑎௞ sin൫2𝜋𝑘𝑓௙௨௡ௗ𝑡൯ +ே

௞ୀଵ

𝑏௞ cos൫2𝜋𝑘𝑓௙௨௡ௗ𝑡൯]                  (2.2)  
 
Where  𝑎௞ = 𝐴௞cos (ϕ௞) , and   𝑏௞ = 𝐴௞sin (ϕ௞) , 
represent the sine and cosine harmonic coefficients, 
respectively. The amplitude 𝐴௞ and phase ϕ௞  of the k-th 
harmonic are calculated as: 
 

𝐴௞ = ඥ𝑎௞
ଶ + 𝑏௞

ଶ                                                         (2.3) 
 

ϕ௞ = 𝑡𝑎𝑛ିଵ ቀ
௕ೖ

௔ೖ
ቁ                                                       (2.4) 

 

2.1.2. Harmonics Coefficients Scaling 
 
  In this study, harmonic amplitude scaling factors are 
selected to reflect typical harmonic amplitudes observed in 
real power systems, creating a realistic waveform model. 
The amplitude of the fundamental component A1 varies 
between 0.7 and 1.1 per unit (pu): 
 

𝐴ଵ ∈  [0.7, 1.1]                                                     (2.5) 
 

Higher harmonics are generated as percentages of A1, 
following real power system observations. 

 
a) Generation of Random Harmonic Amplitude 

Coefficients 
 
  Random amplitude coefficients for the sine and cosine 
terms of the fundamental frequency and its harmonics are 
generated within these ranges to construct the Fourier 
series representation. This variability simulates the 
stochastic nature of harmonic disturbances in actual power 
networks. 
 
For the fundamental waveform, the amplitude coefficients 
are: 
  

𝑎ଵ =
଴.଻ା୰ୟ୬ ()∙଴.ସ

√ଶ
                                                         (2.6)  

 

𝑏ଵ =
଴.଻ା ୰ୟ୬ୢ()∙଴.ସ

√ଶ
                                                         (2.7) 

 
For higher harmonics (k = 2 to N), the coefficients are 
given by: 
 

𝑎௞ = 0.001 +   rand() ∙ (𝑠𝑓(𝑘) ∙ 𝑎ଵ − 0.001)           (2.8) 
 
𝑏௞ = 0.001 +   rand() ∙ (𝑠𝑓(𝑘) ∙ 𝑏ଵ − 0.001)           (2.9) 
 
Where, rand() generates a random number between 0 and 
1, and sf(k) is the scaling factor for the k-th harmonic: 
 
𝑠𝑓 = [0.3, 0.5, 0.2, 0.8, 0.2, 0.5, 0.1, 0.2,  
0.1, 0.2, 0.1, 0.2, 0.1, 0.2]                                       (2.10) 
    
2.1.3. Decaying DC Component and Noise 

 
 A decaying DC component and Gaussian noise are 

added to enhance realism, simulating transient effects and 
measurement noise. The expression for these disturbances 
is: 

 
0.5𝑒ିହ௧ + 0.05 ∙ 𝑟𝑎𝑛𝑑𝑛(𝑁௦)                              (2.11) 

 
Where Ns is the number of samples, and randn()  
generates standard normal random numbers. 
 
2.1.4. Fundamental Frequency Variations  

 
 To simulate realistic conditions, the fundamental 

frequency is nominally set to 50 Hz and randomly varied 
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within 49.5 to 50.5 Hz every 256 samples. The frequency for each sample n is: 
 

𝑓௙௨௡ௗ =  ൝
49.5 +  rand()    𝒊𝒇  𝑚𝑜𝑑(𝑛 − 1,   256) < 8  𝒂𝒏𝒅  𝑚𝑜𝑑(𝑛, 8) = 1

𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒              𝒊𝒇  𝑚𝑜𝑑(𝑛 − 1,   256) < 8  𝒂𝒏𝒅  𝑚𝑜𝑑(𝑛, 8) ≠ 1
   50                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             

                                                       (2.12)  

 
 
2.1.5. Addition of Various Noise Types 

 
 In this study, we conducted a detailed comparison of the 

performance of the MUSIC algorithm and the Fast Fourier 
Transform (FFT) in the presence of different noise types. 
The goal is to evaluate the robustness and accuracy of both 
methods under realistic noise conditions, including white 
Gaussian noise, colored noise (pink noise), and impulsive 
noise, in addition to a decaying DC component combined 
with Gaussian noise described above. 
Both FFT and MUSIC were applied to the same synthetic 
datasets containing harmonic signals with added noise, 
allowing for a direct comparison of their ability to estimate 
the harmonic contents. 
 

a) White Gaussian Noise (WGN)` 
 

White Gaussian noise is characterized by a constant 
power spectral density across all frequencies [20]. Its 
mathematical representation can be expressed as: 
 

𝑛𝑊𝐺𝑁(𝑡) =  𝜎𝑛 ∙ 𝑧(𝑡)                     (2.13) 
 

Where z(t) is a zero-mean Gaussian random variable 
with unit variance, and σn is the standard deviation of the 
noise, determining the noise power. In our tests, we set σn  
such that the Signal-to-Noise Ratio (SNR) was 20 dB. 
 

b) Colored Noise (Pink Noise) 
 
Pink noise, also known as 1/f noise [21] has a power 
spectral density that decreases with increasing frequency. 
Its power spectral density can be mathematically expressed 
as: 
 

𝑆(𝑓) =
௄

௙್                                                                  (2.14) 

 
Where K is a constant and b is typically set to 1. The time-
domain representation can be generated using techniques 
like filtering white noise through a low-pass filter or using 
algorithms like the Voss-McCartney method. We used 
MATLAB’s dsp.ColoredNoise () function to generate pink 
noise. 
 

c) Impulsive Noise 
 
Impulsive noise consists of sporadic high-amplitude spikes 
[22]. It can be mathematically represented as: 
 
𝑛௜௠௣௨௟௦௜௩௘ (𝑡) =  ∑ 𝐴௞ ∙ 𝛿(𝑡 − 𝑡௞)

ேು
௞ୀଵ                        (2.15)   

 
Where Ak  represents the amplitude of the k-th impulse, tk  
is the time at which the impulse occurs, 𝑁𝑃 the number of 
impulses, and δ(t)\ is the Dirac delta function. For our tests, 
we introduced 10 random impulses within the signal. 
The synthetic waveform x(t) becomes: 
 

 
𝑥(𝑡) = ∑ [𝑎௞ sin൫2𝜋𝑘𝑓௙௨௡ௗ𝑡൯ +  𝑏௞ cos (2πk𝑓௙௨௡ௗ𝑡)]  ே

௞ୀଵ + 0.5𝑒ିହ௧ + 0.05 ∙ 𝑟𝑎𝑛𝑑𝑛(𝑁௦) +

(𝑊𝐺𝑁 𝑜𝑟 𝑃𝐼𝑁𝐾, 𝑜𝑟 𝐼𝑀𝑃𝑈𝐿𝑆𝐼𝑉𝐸 )                                                                                                                             (2.16) 
 

 
2.1.6. Furrier Coefficient Calculation 

 
The actual values of the harmonic amplitude and phase 

are calculated from the generated waveform x(t) in 
equation (2.16), based on the integral expressions for 
Fourier coefficients: 

 

𝑎௞ =
ଶ

்
∫ 𝑥(𝑡)cos (2πk𝑓௙௨௡ௗ𝑡)𝑑𝑡

௧బା்

௧బ
                         (2.17) 

                 

𝑏௞ =
ଶ

்
∫ 𝑥(𝑡)sin (2πk𝑓௙௨௡ௗ𝑡)𝑑𝑡

௧బା்

௧బ
                          (2.18) 

                            
 

Where T is the time period of the waveform. The 
expressions in (2.17) and (2.18) are approximated in 
MATLAB as: 
 
𝑎௞ = 2𝑓௙௨௡ௗ ∙ 𝒕𝒓𝒂𝒑𝒛(𝑡, 𝑥(𝑡) ∙ cos൫2πk𝑓௙௨௡ௗ𝑡൯)       (2.19) 
 

𝑏௞ = 2𝑓௙௨௡ௗ ∙ 𝒕𝒓𝒂𝒑𝒛(𝑡, 𝑥(𝑡) ∙ sin൫2πk𝑓௙௨௡ௗ𝑡൯)       (2.20) 
 

2.2. The MUSIC Algorithm  
 
The MUSIC algorithm is a subspace-based method used 

for frequency estimation, [16], [18]. It operates by 
decomposing the signal into signal and noise subspaces, 
allowing precise identification of signal frequencies. 

 
2.2.1. Mathematical Formulation 

 
Let 𝑥(𝑡) be a discrete-time signal sampled at 𝑁௦ time 

points. The signal is assumed to be composed of N 
sinusoids corrupted by noise and non-stationarity similar to 
the synthetic waveform previously generated, equation 
(2.16). 

 
a) Formation of Autocorrelation Matrix 
 
First, we construct the autocorrelation matrix R from the 

signal samples: 
 

𝑅 =
ଵ

ேೞ
∑ 𝑥(𝑡)𝑥(𝑡)ுேೞ

௧ ୀଵ                                          (2.21) 
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Where  𝑥(𝑡)ு is the Hermitian transpose of 𝑥(𝑡). 
 

b) Eigenvalue Decomposition   
 
Then we perform eigenvalue decomposition on R: 
 
𝑅 = 𝐸𝛬𝐸ு                                                            (2.22) 

 
Where  𝛬 is a diagonal matrix of eigenvalues and E is the 
matrix of eigenvectors. 
 
2.2.2. Frequency Estimation  
  

After eigenvalue decomposition is performed, we 
separate the eigenvalues into signal and noise subspaces. 
The smallest 𝑁௦− N eigenvalues correspond to the noise 
subspace. Let En be the eigenvectors associated with these 
smallest eigenvalues.  
The pseudo-spectrum P(f) is given by: 
 

𝑃(𝑓) =
ଵ

∑ ห𝒂(௙)ಹா೙(:,௜)ห
మಿೞషಿ

೔సభ

                                        (2.23) 

 
Where 𝒂(𝑓) = [1, 𝑒ି௝ଶగ௙௧భ, 𝑒ି௝ଶగ௙௧మ, … , 𝑒ି௝ଶగ௙௧ಿೞషభ]்is 
the steering vector at frequency f and  𝐸௡(: , 𝑖)  i-th column 
of En. The peaks in the pseudo-spectrum P(f) correspond to 
the harmonic frequencies fk. 
 
2.2.3. Amplitude and Phase Estimation 

 
Once the frequencies are estimated, the amplitudes and 

phases of the harmonic components can be determined by 
fitting the model directly to the observed signal. The 
amplitudes and phases can be estimated using least-squares 
fitting or other parametric methods. Specifically, we form 
a matrix M where each column consists of cos(𝜔௞𝑡) and 
sin(𝜔௞𝑡) components 

 
a) Formation of Matrix M with Sine and Cosine 

Components  
 
Given a signal x(t), a set of frequencies {𝜔௞}, k =1 to N, 

and a regularization term λ, we start by forming the matrix 
M using cosine and sine terms as follows:. 
 

  (2.24) 
 
Where  ൛𝑡ଵ , 𝑡ଶ, … , 𝑡ேೞ

ൟ , are time samples. 
 

b) Regularized Least Squares Solution to Estimate 
Coefficients  

 
To estimate the coefficients, we solve the linear system 

𝐌𝐩 = 𝐱  where p contains the amplitude and phase 
information. The regularization term,  λ = 1 x 10ି଻

  helps 
to prevent overfitting. 
The solution is given by: 
 
𝑝 = (𝑀்𝑀 + λI)ିଵ𝑀𝑻𝒙                                                      (2.25) 

Where 𝒙 = ൣ𝑥(𝑡ଵ ), 𝑥(𝑡ଶ), … , 𝑥(𝑡ேೞ
)൧

்
  is the signal vector, 

and I the identity matrix. 
 

c) Calculation of Amplitude and Phase from the 
Coefficients  
 

Once the coefficient vector p is estimated, we can 
determine the amplitude Ak and phase ϕk for each 
frequency fk, using:. 
 
𝑎௞ = 𝐩(2𝑘 − 1)                                                         (2.26) 
 
𝑏௞ = 𝐩(2𝑘)                                                                (2.27) 

 
 

3. RESULTS AND DISCUSSION  
 
This section presents the results of applying the MUSIC 

and FFT algorithms to estimate harmonic amplitudes and 
phases across different noise environments. The analysis 
examines the impact of noise, algorithm accuracy, mean 
absolute error (MAE) trend, and computational efficiency. 

 
3.1. Impact of Noise Environments on Harmonic 
Estimation 

 
Figures 3.1, 3.2, and 3.3 display simulated waveforms 

with White Gaussian Noise (WGN), Pink Noise, and 
Impulsive Noise, respectively, to illustrate the nature of 
disturbances each noise type introduces. 

 

 
Fig. 3.1. Waveform with White Gaussian Noise (WGN) 

 

 
Fig.3.2. Waveform with Pink Noise 
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Fig.3.3 Waveform with Impulsive Noise 

 
Each noise type affects harmonic estimation differently, 
providing a basis for evaluating the accuracy of the MUSIC 
and FFT algorithms. 
 
3.2. Harmonic Estimation Accuracy Comparison by 
Noise Type 

 
To comprehensively evaluate the performance of 

MUSIC and FFT under each noise condition, we present 
separate analyses for harmonic amplitude and phase 
estimation accuracy in WGN, Pink Noise, and Impulsive 
Noise environments. 

 
a) Harmonic Estimation Accuracy in White 

Gaussian Noise  
 

Figures 3.4 and 3.5 present the harmonic amplitude and 
phase estimation accuracy for both algorithms under WGN 
conditions. 
 

 
Fig.3.4. Harmonic Amplitude Estimation with WGN 

 

 
Fig.3.5. Harmonic Phase Estimation with WGN 

In this low-interference environment, MUSIC displays 
higher accuracy, with smaller deviations from actual 
values compared to FFT, though both algorithms perform 
reasonably well due to the relatively low noise complexity. 

 
b) Harmonic Estimation Accuracy in Pink Noise 

 
Figures 3.6 and 3.7 depict the harmonic amplitude and 

phase estimation accuracy for both algorithms in Pink 
Noise conditions, which introduce frequency-dependent 
challenges. 
 

 
Fig.3.6. Harmonic Amplitude Estimation  

with Pink Noise 
 

 
Fig.3.7. Harmonic Phase Estimation with Pink Noise 

 
Pink Noise affects FFT's estimation accuracy, 

particularly for phase estimation in higher-order 
harmonics. The MUSIC algorithm, however, maintains 
higher accuracy, showcasing its robustness under 
frequency-dependent noise. 
 

c) Harmonic Estimation Accuracy in Impulsive 
Noise 

 
Figures 3.8 and 3.9 illustrate the harmonic amplitude 

and phase estimation accuracy under Impulsive Noise, 
which poses the most severe challenge. 

 

 
Fig.3.8. Harmonic Amplitude Estimation with 

Impulsive Noise 
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Fig.3.9. Harmonic Phase Estimation  

with Impulsive Noise 
 
In this environment, FFT accuracy significantly 

deteriorates, especially for higher harmonics, while 
MUSIC demonstrates resilience, achieving substantially 
closer estimates to actual values even in the presence of 
high-amplitude noise peaks. 

 
3.3. Mean Absolute Error (MAE) Analysis by Noise 
Type 
 

Figures 3.10 and 3.11 provide a comparative analysis of 
Mean Absolute Error (MAE) for amplitude and phase 
estimation under each noise type. 
 

 
Fig.3.10. MAE for Amplitude Estimation  

across Noise Types 

 
Fig.3.11. MAE for Phase Estimation  

across Noise Types 

The MAE analysis reveals that the MUSIC algorithm 
consistently yields lower MAE across noise environments, 
with significant advantages over FFT in Pink and 
Impulsive Noise conditions. These results emphasize 
MUSIC’s suitability for applications demanding high 
accuracy in noisy environments. 
 
3.4. Algorithm Execution Time 

 
Despite the superior accuracy of the MUSIC algorithm, 

it comes at the cost of increased computational time. Table 
3.1 compares the execution times of the FFT and MUSIC 
algorithms for the impulsive noise scenario. As expected, 
the FFT algorithm was much faster, with an elapsed time 
of 5.810E-03 seconds compared to the 3.003E-01 seconds for 
MUSIC. The trade-off between accuracy and 
computational efficiency is evident, with the FFT being 
more suitable for real-time applications where speed is a 
priority, while MUSIC is better suited for scenarios 
requiring high-precision harmonic analysis. 

 
Table 3.1. Elapsed Time Comparison for Impulsive 
Noise Scenario 

FFT  
(seconds) 

MUSIC  
(seconds) 

5.810E-03 3.003E-01 

 
 
4. DISCUSSION  

 
The comparative analysis of the FFT and MUSIC 

algorithms demonstrates their respective strengths and 
weaknesses in harmonic amplitude and phase estimation 
within power systems under varying noise conditions. 
These results underscore the importance of selecting the 
appropriate algorithm based on specific application 
requirements. While FFT remains a reliable choice for 
scenarios where computational efficiency is prioritized, the 
MUSIC algorithm is more appropriate for situations 
necessitating exact amplitude and phase estimations. 
Future research could focus on developing hybrid 
approaches or optimizations that combine the strengths of 
both FFT and MUSIC, potentially offering a balanced 
solution for harmonic analysis in power systems. 

 
4.1. Practical Implementation and Integration of 
MUSIC with Existing Power Quality Monitoring 
Systems and Standards 

 
Integrating the MUSIC algorithm into existing power 

quality monitoring systems offers promising potential for 
enhancing the accuracy and resolution of harmonic 
detection in modern power grids. However, practical 
implementation requires addressing key challenges, such 
as ensuring compatibility with industry standards, 
optimizing computational efficiency, and integrating real-
time data processing. 

 
a) Integration with Existing Standards 
 
Power quality monitoring systems in most regions are 

governed by international standards, such as IEEE 519 
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[18], IEC 61000-4-7 [23], and EN 50160 [24], which 
define the acceptable levels of harmonic distortion and the 
methods used to measure and monitor power quality. These 
standards typically rely on Fast-Fourier-Transform (FFT)-
based approaches due to their simplicity and established 
use. However, the limitations of FFT, especially in 
detecting harmonics under non-stationary conditions, 
create a gap that MUSIC can address. 
The integration of MUSIC into existing systems would 
require modifications in the data processing architecture 
and compliance with the standards governing power 
quality reporting: 

 Compliance with Frequency Bins: Current 
standards often define specific frequency bins for 
harmonic reporting. MUSIC, with its high-resolution 
capability, would need to align its frequency 
estimation outputs with these bins, ensuring that the 
results are compatible with existing regulatory 
frameworks. 

 Dynamic Power Quality Reporting: Standards 
focus on steady-state conditions, but modern grids 
with renewable energy integration experience 
frequent transients and dynamic behavior. MUSIC's 
ability to analyze non-stationary signals provides an 
opportunity to redefine power quality monitoring, 
expanding the scope of existing standards to include 
transient harmonics and dynamic conditions. 

 
b) Computational Efficiency and Real-Time 

Applicability 
 
One of the main considerations when integrating 

MUSIC into existing power quality monitoring systems is 
computational efficiency, especially when deployed for 
real-time monitoring. MUSIC requires the computation of 
the autocorrelation matrix and its eigenvalue 
decomposition, which can be computationally intensive, 
especially for large datasets or high sampling rates required 
in power quality applications. 
To address this, several strategies can be employed: 

 Parallel Computing: Parallelized implementations 
of the MUSIC algorithm can be integrated into 
existing systems to handle real-time data streams, 
leveraging modern multi-core processors or 
distributed computing architectures. Techniques such 
as GPU acceleration and cloud computing platforms 
could be employed to reduce the computational 
burden [17]. 

 Adaptive Sampling: In practice, power quality 
monitoring systems could use adaptive sampling 
techniques to selectively apply MUSIC only during 
critical periods, such as when non-stationary behavior 
is detected, or when harmonic distortion exceeds 
predefined thresholds [25]. This would optimize 
system resources by avoiding unnecessary 
computations during steady-state conditions. 

 Hardware Implementation: For high-speed, real-
time processing, integrating MUSIC into dedicated 
hardware platforms, such as Field-Programmable 
Gate Arrays (FPGAs) or Digital Signal Processors 
(DSPs), would allow for faster execution times and 
lower latency, making the algorithm more suitable for 
continuous monitoring [26]. 

4.2. Limitations of the Synthetic Data Used for the 
Study  

 
While the synthetic data used in this study provides a 

controlled environment for evaluating the effectiveness of 
the MUSIC algorithm, it cannot fully capture the 
complexities and uncertainties present in real-world power 
systems. The following are some key limitations associated 
with using synthetic data [27]: 

 Lack of Environmental Variability: Real-world 
power systems are subject to a wide range of 
environmental factors, such as fluctuating load 
demands, changing weather conditions, and varying 
grid configurations. Synthetic data may not fully 
capture this variability, leading to results that are less 
representative of actual grid performance. 

 Simplified Noise Models: In practice, power grids 
are influenced by a variety of noise sources, including 
electromagnetic interference, inverter switching 
noise, and signal degradation from long transmission 
distances. Synthetic datasets used in this study 
assume simplified and idealized noise models, which 
may underestimate the impact of real-world noise on 
harmonic detection accuracy. 

 Inadequate Representation of Dynamic Grid 
Conditions: Synthetic data used in this study models 
steady-state conditions and controlled transients, 
which may not reflect the complex, dynamic behavior 
of power systems with high penetration of renewable 
energy sources. 

 
 
5. CONCLUSION  

 
This paper has demonstrated the effectiveness of the 

MUSIC algorithm for high-resolution harmonic analysis in 
power systems, particularly in non-stationary and noisy 
environments. Through simulation results, we have shown 
that MUSIC offers a more accurate characterization of 
harmonic components compared to conventional methods 
like FFT, which typically suffers from limited resolution, 
particularly in cases with close or weakly separated 
harmonics. Our results align with and extend previous 
research, which has acknowledged MUSIC's superior 
performance in harmonic detection, especially in power 
systems with renewable energy integration. 
Comparatively, studies in the literature often reveal FFT’s 
limitations in distinguishing harmonic components under 
fluctuating conditions, where MUSIC's subspace-based 
approach excels by accurately isolating harmonics even in 
complex noise backgrounds. This improved precision, 
validated through both our simulations and corroborated by 
other studies, underscores MUSIC’s capability as a robust 
tool for monitoring power quality. Its adoption could lead 
to more effective and targeted mitigation strategies in 
modern power systems, providing critical insights into 
harmonic interactions and supporting the development of 
grid stability solutions tailored for renewable-rich 
environments. These results confirm MUSIC’s unique 
contribution to advancing harmonic analysis in dynamic 
power systems. 
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. The findings of this study hold significant promise for 
several application fields, including: 
 Power Quality Monitoring: Implementing the 

MUSIC algorithm in real-time power quality 
monitoring systems can facilitate continuous 
assessment of harmonic distortion levels, helping 
utilities to maintain compliance with regulatory 
standards and minimize equipment damage. 

 Smart Grid Technology: As smart grid technologies 
become more prevalent, the integration of advanced 
harmonic analysis techniques like MUSIC can 
enhance the overall functionality of these systems by 
providing real-time insights into power quality, 
enabling proactive management of harmonic issues. 

 Microgrid Operations: In microgrid environments, 
where renewable resources and energy storage 
systems operate in tandem [28], the MUSIC 
algorithm can help optimize power quality 
management, ensuring stability and efficiency in 
local energy systems. 

 Industrial Applications: Many industrial facilities 
are sensitive to power quality issues. The application 
of the MUSIC algorithm for harmonic analysis can 
aid industries in identifying and mitigating harmonic 
sources, improving the performance and lifespan of 
equipment. 

 Renewable Energy Integration: The growing 
penetration of renewables necessitates effective 
harmonic management to ensure grid stability. The 
MUSIC algorithm can be employed to assess the 
impact of distributed energy resources (DERs) on 
power quality, informing strategies for integrating 
these resources into existing grids [29]. 

However, despite its advantages, the MUSIC algorithm 
faces certain limitations. One of the key challenges is the 
relationship between the number of harmonics and the 
degrees of freedom (or the number of sensors used in the 
system). As the number of harmonics approaches or 
exceeds the number of available degrees of freedom, the 
algorithm's ability to resolve and accurately estimate these 
harmonic components diminishes. This limitation can 
impact its applicability in systems with a high density of 
harmonic sources. Furthermore, the computational 
complexity of MUSIC increases significantly with a higher 
number of harmonics, as it requires the calculation and 
decomposition of large covariance matrices. These factors 
introduce scalability issues when applied to larger power 
grids or systems with numerous non-linear loads and 
distributed generators. Moreover, the real-time 
implementation of the algorithm can be challenging, 
especially in fast-changing power systems, due to the high 
computational burden. Optimization techniques, hardware 
acceleration, or the development of more efficient 
subspace-based methods will be necessary to overcome 
these limitations and enable MUSIC's real-time application 
in large-scale, dynamic power systems. 

 
 

FUTURE WORK 
 

While this study has primarily relied on simulations and 
synthetic data to demonstrate the effectiveness of the 

MUSIC algorithm in harmonic analysis, the next logical 
step is to validate the results using real-world data from 
operational power systems. Future work will focus on 
applying the MUSIC algorithm to harmonic analysis in real 
power grids, particularly at the Point of Common Coupling 
(PCC) in systems with high penetration of renewable 
energy resources. 
Several aspects of real-world applicability will be 
considered, including the validation of harmonic detection 
in environments with fluctuating power quality due to non-
linear loads, inverter-based resources, and intermittent 
renewable energy generation. Real-world data will allow 
us to test the robustness of the algorithm against various 
forms of noise and disturbances that may not be fully 
captured in synthetic simulations. 
Additionally, future work will explore the integration of 
the MUSIC algorithm into real-time power quality 
monitoring systems. This will involve addressing the 
computational challenges discussed in this paper, such as 
reducing the algorithm’s complexity for real-time 
applications and investigating the potential for hardware 
acceleration or parallel processing techniques. 
Furthermore, expanding the analysis to include data 
preprocessing and a comparison of MUSIC with other 
high-resolution techniques like ESPRIT and wavelet 
transform in practical settings will provide deeper insights 
into the scalability and overall performance of these 
methods. 
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